{mayi_des}
The satisfaction probability Pr[$\phi$] := Pr$_{\beta:vars(\phi) \to \{0,1\}}[\beta\models \phi]$ of a propositional formula $\phi$ is the likelihood that a random assignment $\beta$ makes the formula true. We study the complexity of the problem $k$SAT-Pr$_{>p}$ = {$\phi$ is a $k$CNF formula | Pr[$\phi$] > p} for fixed $k$ and $p$. While 3SAT-Pr$_{>0}$ = 3SAT is NP-complete and SAT-Pr$_{>1/2}$ is PP-complete, Akmal and Williams recently showed that 3SAT-Pr$_{>1/2}$ lies in P and 4SAT-Pr$_{>1/2}$ is NP-complete; but the methods used to prove these striking results stay silent about, say, 4SAT-Pr$_{>3/4}$, leaving the computational complexity of $k$SAT-Pr$_{>p}$ open for most $k$ and $p$. In the present paper we give a complete characterization in the form of a trichotomy: $k$SAT-Pr$_{>p}$ lies in AC$^0$, is NL-complete, or is NP-complete. The proof of the trichotomy hinges on a new order-theoretic insight: Every set of $k$CNF formulas contains a formula of maximum satisfaction probability. This deceptively simple statement allows us to (1) kernelize $k$SAT-Pr$_{\ge p}$ for the joint parameters $k$ and $p$, (2) show that the variables of the kernel form a backdoor set when the trichotomy states membership in AC$^0$ or NL, and (3) prove locality properties for $k$CNF formulas $\phi$, by which Pr[$\phi$] < $p$ implies that Pr[$\psi$] < $p$ holds already for a subset $\psi$ of $\phi$'s clauses whose size depends only on $k$ and $p$, and Pr[$\phi$] = $p$ implies $\phi \equiv \psi$ for some $k$CNF formula $\psi$ whose size once more depends only on $k$ and $p$.
A property $\Pi$ on a finite set $U$ is \emph{monotone} if for every $X \subseteq U$ satisfying $\Pi$, every superset $Y \subseteq U$ of $X$ also satisfies $\Pi$. Many combinatorial properties can be seen as monotone properties. The problem of finding a minimum subset of $U$ satisfying $\Pi$ is a central problem in combinatorial optimization. Although many approximate/exact algorithms have been developed to solve this kind of problem on numerous properties, a solution obtained by these algorithms is often unsuitable for real-world applications due to the difficulty of building accurate mathematical models on real-world problems. A promising approach to overcome this difficulty is to \emph{enumerate} multiple small solutions rather than to \emph{find} a single small solution. To this end, given a weight function $w: U \to \mathbb N$ and an integer $k$, we devise algorithms that \emph{approximately} enumerate all minimal subsets of $U$ with weight at most $k$ satisfying $\Pi$ for various monotone properties $\Pi$, where "approximate enumeration" means that algorithms output all minimal subsets satisfying $\Pi$ whose weight at most $k$ and may output some minimal subsets satisfying $\Pi$ whose weight exceeds $k$ but is at most $ck$ for some constant $c \ge 1$. These algorithms allow us to efficiently enumerate minimal vertex covers, minimal dominating sets in bounded degree graphs, minimal feedback vertex sets, minimal hitting sets in bounded rank hypergraphs, etc., of weight at most $k$ with constant approximation factors.
We consider minimum time multicasting problems in directed and undirected graphs: given a root node and a subset of $t$ terminal nodes, multicasting seeks to find the minimum number of rounds within which all terminals can be informed with a message originating at the root. In each round, the telephone model we study allows the information to move via a matching from the informed nodes to the uninformed nodes. Since minimum time multicasting in digraphs is poorly understood compared to the undirected variant, we study an intermediate problem in undirected graphs that specifies a target $k < t$, and requires the only $k$ of the terminals be informed in the minimum number of rounds. For this problem, we improve implications of prior results and obtain an $\tilde{O}(t^{1/3})$ multiplicative approximation. For the directed version, we obtain an {\em additive} $\tilde{O}(k^{1/2})$ approximation algorithm (with a poly-logarithmic multiplicative factor). Our algorithms are based on reductions to the related problems of finding $k$-trees of minimum poise (sum of maximum degree and diameter) and applying a combination of greedy network decomposition techniques and set covering under partition matroid constraints.
Union volume estimation is a classical algorithmic problem. Given a family of objects $O_1,\ldots,O_n \subseteq \mathbb{R}^d$, we want to approximate the volume of their union. In the special case where all objects are boxes (also known as hyperrectangles) this is known as Klee's measure problem. The state-of-the-art algorithm [Karp, Luby, Madras '89] for union volume estimation and Klee's measure problem in constant dimension $d$ computes a $(1+\varepsilon)$-approximation with constant success probability by using a total of $O(n/\varepsilon^2)$ queries of the form (i) ask for the volume of $O_i$, (ii) sample a point uniformly at random from $O_i$, and (iii) query whether a given point is contained in $O_i$. We show that if one can only interact with the objects via the aforementioned three queries, the query complexity of [Karp, Luby, Madras '89] is indeed optimal, i.e., $\Omega(n/\varepsilon^2)$ queries are necessary. Our lower bound already holds for estimating the union of equiponderous axis-aligned polygons in $\mathbb{R}^2$, and even if the algorithm is allowed to inspect the coordinates of the points sampled from the polygons, and still holds when a containment query can ask containment of an arbitrary (not sampled) point. Guided by the insights of the lower bound, we provide a more efficient approximation algorithm for Klee's measure problem improving the $O(n/\varepsilon^2)$ time to $O((n+\frac{1}{\varepsilon^2}) \cdot \log^{O(d)}n)$. We achieve this improvement by exploiting the geometry of Klee's measure problem in various ways: (1) Since we have access to the boxes' coordinates, we can split the boxes into classes of boxes of similar shape. (2) Within each class, we show how to sample from the union of all boxes, by using orthogonal range searching. And (3) we exploit that boxes of different classes have small intersection, for most pairs of classes.
The $k$-center problem is a classical clustering problem in which one is asked to find a partitioning of a point set $P$ into $k$ clusters such that the maximum radius of any cluster is minimized. It is well-studied. But what if we add up the radii of the clusters instead of only considering the cluster with maximum radius? This natural variant is called the $k$-min-sum-radii problem. It has become the subject of more and more interest in recent years, inspiring the development of approximation algorithms for the $k$-min-sum-radii problem in its plain version as well as in constrained settings. We study the problem for Euclidean spaces $\mathbb{R}^d$ of arbitrary dimension but assume the number $k$ of clusters to be constant. In this case, a PTAS for the problem is known (see Bandyapadhyay, Lochet and Saurabh, SoCG, 2023). Our aim is to extend the knowledge base for $k$-min-sum-radii to the domain of fair clustering. We study several group fairness constraints, such as the one introduced by Chierichetti et al. (NeurIPS, 2017). In this model, input points have an additional attribute (e.g., colors such as red and blue), and clusters have to preserve the ratio between different attribute values (e.g., have the same fraction of red and blue points as the ground set). Different variants of this general idea have been studied in the literature. To the best of our knowledge, no approximative results for the fair $k$-min-sum-radii problem are known, despite the immense amount of work on the related fair $k$-center problem. We propose a PTAS for the fair $k$-min-sum-radii problem in Euclidean spaces of arbitrary dimension for the case of constant $k$. To the best of our knowledge, this is the first PTAS for the problem. It works for different notions of group fairness.
An abstract topological graph (AT-graph) is a pair $A=(G,\mathcal{X})$, where $G=(V,E)$ is a graph and $\mathcal{X} \subseteq {E \choose 2}$ is a set of pairs of edges of $G$. A realization of $A$ is a drawing $\Gamma_A$ of $G$ in the plane such that any two edges $e_1,e_2$ of $G$ cross in $\Gamma_A$ if and only if $(e_1,e_2) \in \mathcal{X}$; $\Gamma_A$ is simple if any two edges intersect at most once (either at a common endpoint or at a proper crossing). The AT-graph Realizability (ATR) problem asks whether an input AT-graph admits a realization. The version of this problem that requires a simple realization is called Simple AT-graph Realizability (SATR). It is a classical result that both ATR and SATR are NP-complete. In this paper, we study the SATR problem from a new structural perspective. More precisely, we consider the size $\mathrm{\lambda}(A)$ of the largest connected component of the crossing graph of any realization of $A$, i.e., the graph ${\cal C}(A) = (E, \mathcal{X})$. This parameter represents a natural way to measure the level of interplay among edge crossings. First, we prove that SATR is NP-complete when $\mathrm{\lambda}(A) \geq 6$. On the positive side, we give an optimal linear-time algorithm that solves SATR when $\mathrm{\lambda}(A) \leq 3$ and returns a simple realization if one exists. Our algorithm is based on several ingredients, in particular the reduction to a new embedding problem subject to constraints that require certain pairs of edges to alternate (in the rotation system), and a sequence of transformations that exploit the interplay between alternation constraints and the SPQR-tree and PQ-tree data structures to eventually arrive at a simpler embedding problem that can be solved with standard techniques.
We propose a randomized multiplicative weight update (MWU) algorithm for $\ell_{\infty}$ regression that runs in $\widetilde{O}\left(n^{2+1/22.5} \text{poly}(1/\epsilon)\right)$ time when $\omega = 2+o(1)$, improving upon the previous best $\widetilde{O}\left(n^{2+1/18} \text{poly} \log(1/\epsilon)\right)$ runtime in the low-accuracy regime. Our algorithm combines state-of-the-art inverse maintenance data structures with acceleration. In order to do so, we propose a novel acceleration scheme for MWU that exhibits {\it stabiliy} and {\it robustness}, which are required for the efficient implementations of the inverse maintenance data structures. We also design a faster {\it deterministic} MWU algorithm that runs in $\widetilde{O}\left(n^{2+1/12}\text{poly}(1/\epsilon)\right))$ time when $\omega = 2+o(1)$, improving upon the previous best $\widetilde{O}\left(n^{2+1/6} \text{poly} \log(1/\epsilon)\right)$ runtime in the low-accuracy regime. We achieve this by showing a novel stability result that goes beyond the previous known works based on interior point methods (IPMs). Our work is the first to use acceleration and inverse maintenance together efficiently, finally making the two most important building blocks of modern structured convex optimization compatible.
Given an undirected graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, with vertex weights $(w(u))_{u\in\mathcal{V}}$, vertex values $(\alpha(u))_{u\in\mathcal{V}}$, a knapsack size $s$, and a target value $d$, the \vcknapsack problem is to determine if there exists a subset $\mathcal{U}\subseteq\mathcal{V}$ of vertices such that $\mathcal{U}$ forms a vertex cover, $w(\mathcal{U})=\sum_{u\in\mathcal{U}} w(u) \le s$, and $\alpha(\mathcal{U})=\sum_{u\in\mathcal{U}} \alpha(u) \ge d$. In this paper, we closely study the \vcknapsack problem and its variations, such as \vcknapsackbudget, \minimalvcknapsack, and \minimumvcknapsack, for both general graphs and trees. We first prove that the \vcknapsack problem belongs to the complexity class \NPC and then study the complexity of the other variations. We generalize the problem to \setc and \hs versions and design polynomial time $H_g$-factor approximation algorithm for the \setckp problem and d-factor approximation algorithm for \hstp using primal dual method. We further show that \setcks and \hsmb are hard to approximate in polynomial time. Additionally, we develop a fixed parameter tractable algorithm running in time $8^{\mathcal{O}({\rm tw})}\cdot n\cdot {\sf min}\{s,d\}$ where ${\rm tw},s,d,n$ are respectively treewidth of the graph, the size of the knapsack, the target value of the knapsack, and the number of items for the \minimalvcknapsack problem.
Score-based diffusion models, which generate new data by learning to reverse a diffusion process that perturbs data from the target distribution into noise, have achieved remarkable success across various generative tasks. Despite their superior empirical performance, existing theoretical guarantees are often constrained by stringent assumptions or suboptimal convergence rates. In this paper, we establish a fast convergence theory for a popular SDE-based sampler under minimal assumptions. Our analysis shows that, provided $\ell_{2}$-accurate estimates of the score functions, the total variation distance between the target and generated distributions is upper bounded by $O(d/T)$ (ignoring logarithmic factors), where $d$ is the data dimensionality and $T$ is the number of steps. This result holds for any target distribution with finite first-order moment. To our knowledge, this improves upon existing convergence theory for both the SDE-based sampler and another ODE-based sampler, while imposing minimal assumptions on the target data distribution and score estimates. This is achieved through a novel set of analytical tools that provides a fine-grained characterization of how the error propagates at each step of the reverse process.
We consider a scalar conservation law with linear and nonlinear flux function on a bounded domain $\Omega\subset{\R}^2$ with Lipschitz boundary $\partial\Omega.$ We discretize the spatial variable with the standard finite element method where we use a local extremum diminishing flux limiter which is linearity preserving. For temporal discretization, we use the second order explicit strong stability preserving Runge--Kutta method. It is known that the resulting fully-discrete scheme satisfies the discrete maximum principle. Under the sufficiently regularity of the weak solution and the CFL condition $k = \mathcal{O}(h^2)$, we derive error estimates in $L^{2}-$ norm for the algebraic flux correction scheme in space and in $\ell^\infty$ in time. We also present numerical experiments that validate that the fully-discrete scheme satisfies the temporal order of convergence of the fully-discrete scheme that we proved in the theoretical analysis.
Given a matrix $\mathbf{A} \in \mathbb{R}^{k \times n}$, a partitioning of $[k]$ into groups $S_1,\dots,S_m$, an outer norm $p$, and a collection of inner norms such that either $p \ge 1$ and $p_1,\dots,p_m \ge 2$ or $p_1=\dots=p_m=p \ge 1/\log n$, we prove that there is a sparse weight vector $\mathbf{\beta} \in \mathbb{R}^{m}$ such that $\sum_{i=1}^m \mathbf{\beta}_i \cdot \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p \approx_{1\pm\varepsilon} \sum_{i=1}^m \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p$, where the number of nonzero entries of $\mathbf{\beta}$ is at most $O_{p,p_i}(\varepsilon^{-2}n^{\max(1,p/2)}(\log n)^2(\log(n/\varepsilon)))$. When $p_1\dots,p_m \ge 2$, this weight vector arises from an importance sampling procedure based on the \textit{block Lewis weights}, a recently proposed generalization of Lewis weights. Additionally, we prove that there exist efficient algorithms to find the sparse weight vector $\mathbf{\beta}$ in several important regimes of $p$ and $p_1,\dots,p_m$. Our results imply a $\widetilde{O}(\varepsilon^{-1}\sqrt{n})$-linear system solve iteration complexity for the problem of minimizing sums of Euclidean norms, improving over the previously known $\widetilde{O}(\sqrt{m}\log({1/\varepsilon}))$ iteration complexity when $m \gg n$. Our main technical contribution is a substantial generalization of the \textit{change-of-measure} method that Bourgain, Lindenstrauss, and Milman used to obtain the analogous result when every group has size $1$. Our generalization allows one to analyze change of measures beyond those implied by D. Lewis's original construction, including the measure implied by the block Lewis weights and natural approximations of this measure.