It has been argued that reduction procedures are closely connected to the question about identity of proofs and that accepting certain reductions would lead to a trivialization of identity of proofs in the sense that every derivation of the same conclusion would have to be identified. In this paper it will be shown that the question, which reductions we accept in our system, is not only important if we see them as generating a theory of proof identity but is also decisive for the more general question whether a proof has meaningful content. There are certain reductions which would not only force us to identify proofs of different arbitrary formulas but which would render derivations in a system allowing them meaningless. To exclude such cases, a minimal criterion is proposed which reductions have to fulfill to be acceptable.
Singularly perturbed boundary value problems pose a significant challenge for their numerical approximations because of the presence of sharp boundary layers. These sharp boundary layers are responsible for the stiffness of solutions, which leads to large computational errors, if not properly handled. It is well-known that the classical numerical methods as well as the Physics-Informed Neural Networks (PINNs) require some special treatments near the boundary, e.g., using extensive mesh refinements or finer collocation points, in order to obtain an accurate approximate solution especially inside of the stiff boundary layer. In this article, we modify the PINNs and construct our new semi-analytic SL-PINNs suitable for singularly perturbed boundary value problems. Performing the boundary layer analysis, we first find the corrector functions describing the singular behavior of the stiff solutions inside boundary layers. Then we obtain the SL-PINN approximations of the singularly perturbed problems by embedding the explicit correctors in the structure of PINNs or by training the correctors together with the PINN approximations. Our numerical experiments confirm that our new SL-PINN methods produce stable and accurate approximations for stiff solutions.
Finite-dimensional truncations are routinely used to approximate partial differential equations (PDEs), either to obtain numerical solutions or to derive reduced-order models. The resulting discretized equations are known to violate certain physical properties of the system. In particular, first integrals of the PDE may not remain invariant after discretization. Here, we use the method of reduced-order nonlinear solutions (RONS) to ensure that the conserved quantities of the PDE survive its finite-dimensional truncation. In particular, we develop two methods: Galerkin RONS and finite volume RONS. Galerkin RONS ensures the conservation of first integrals in Galerkin-type truncations, whether used for direct numerical simulations or reduced-order modeling. Similarly, finite volume RONS conserves any number of first integrals of the system, including its total energy, after finite volume discretization. Both methods are applicable to general time-dependent PDEs and can be easily incorporated in existing Galerkin-type or finite volume code. We demonstrate the efficacy of our methods on two examples: direct numerical simulations of the shallow water equation and a reduced-order model of the nonlinear Schrodinger equation. As a byproduct, we also generalize RONS to phenomena described by a system of PDEs.
The satisfiability problem is NP-complete but there are subclasses where all the instances are satisfiable. For this, restrictions on the shape of the formula are made. Darman and D\"ocker show that the subclass MONOTONE $3$-SAT-($k$,1) with $k \geq 5$ proves to be NP-complete and pose the open question whether instances of MONOTONE $3$-SAT-(3,1) are satisfiable. This paper shows that all instances of MONOTONE $3$-SAT-(3,1) are satisfiable using the new concept of a color-structures.
Penalizing complexity (PC) priors is a principled framework for designing priors that reduce model complexity. PC priors penalize the Kullback-Leibler Divergence (KLD) between the distributions induced by a ``simple'' model and that of a more complex model. However, in many common cases, it is impossible to construct a prior in this way because the KLD is infinite. Various approximations are used to mitigate this problem, but the resulting priors then fail to follow the designed principles. We propose a new class of priors, the Wasserstein complexity penalization (WCP) priors, by replacing KLD with the Wasserstein distance in the PC prior framework. These priors avoid the infinite model distance issues and can be derived by following the principles exactly, making them more interpretable. Furthermore, principles and recipes to construct joint WCP priors for multiple parameters analytically and numerically are proposed and we show that they can be easily obtained, either numerically or analytically, for a general class of models. The methods are illustrated through several examples for which PC priors have previously been applied.
We consider the approximation of weakly T-coercive operators. The main property to ensure the convergence thereof is the regularity of the approximation (in the vocabulary of discrete approximation schemes). In a previous work the existence of discrete operators $T_n$ which converge to $T$ in a discrete norm was shown to be sufficient to obtain regularity. Although this framework proved usefull for many applications for some instances the former assumption is too strong. Thus in the present article we report a weaker criterium for which the discrete operators $T_n$ only have to converge point-wise, but in addition a weak T-coercivity condition has to be satisfied on the discrete level. We apply the new framework to prove the convergence of certain $H^1$-conforming finite element discretizations of the damped time-harmonic Galbrun's equation, which is used to model the oscillations of stars. A main ingredient in the latter analysis is the uniformly stable invertibility of the divergence operator on certain spaces, which is related to the topic of divergence free elements for the Stokes equation.
A linear code is said to be self-orthogonal if it is contained in its dual. Self-orthogonal codes are of interest because of their important applications, such as for constructing linear complementary dual (LCD) codes and quantum codes. In this paper, we construct several new families of ternary self-orthogonal codes by employing weakly regular plateaued functions. Their parameters and weight distributions are completely determined. Then we apply these self-orthogonal codes to construct several new families of ternary LCD codes. As a consequence, we obtain many (almost) optimal ternary self-orthogonal codes and LCD codes.
The field of 'explainable' artificial intelligence (XAI) has produced highly cited methods that seek to make the decisions of complex machine learning (ML) methods 'understandable' to humans, for example by attributing 'importance' scores to input features. Yet, a lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method and has also so far hindered the theoretical verification and empirical validation of XAI methods. This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies. Here, we craft benchmark datasets for three different non-linear classification scenarios, in which the important class-conditional features are known by design, serving as ground truth explanations. Using novel quantitative metrics, we benchmark the explanation performance of a wide set of XAI methods across three deep learning model architectures. We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods. Moreover, we demonstrate that explanations derived from different model architectures can be vastly different; thus, prone to misinterpretation even under controlled conditions.
We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results, and a couple of applications in view of bifurcation analysis.
We introduce a family of identities that express general linear non-unitary evolution operators as a linear combination of unitary evolution operators, each solving a Hamiltonian simulation problem. This formulation can exponentially enhance the accuracy of the recently introduced linear combination of Hamiltonian simulation (LCHS) method [An, Liu, and Lin, Physical Review Letters, 2023]. For the first time, this approach enables quantum algorithms to solve linear differential equations with both optimal state preparation cost and near-optimal scaling in matrix queries on all parameters.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.