亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider a diffusive predator-prey system with spatial memory and predator-taxis. Since in this system, the memory delay appears in the diffusion term, and the diffusion term is nonlinear, the classical normal form of Hopf bifurcation in the reaction-diffusion system with delay can't be applied to this system. Thus, in this paper, we first derive an algorithm for calculating the normal form of Hopf bifurcation in this system. Then in order to illustrate the effectiveness of our newly developed algorithm, we consider the diffusive Holling-Tanner model with spatial memory and predator-taxis. The stability and Hopf bifurcation analysis of this model are investigated, and the direction and stability of Hopf bifurcation periodic solution are also researched by using our newly developed algorithm for calculating the normal form of Hopf bifurcation. At last, we carry out some numerical simulations, two stable spatially inhomogeneous periodic solutions corresponding to the mode-1 and mode-2 Hopf bifurcations are found, which verifies our theoretical analysis results.

相關內容

This work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system, which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff-Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface deformation gradient is employed, such that an intermediate surface configuration is introduced. The surface metric and curvature of this intermediate configuration follow from the solution of nonlinear evolution laws - ordinary differential equations (ODEs) - that stem from a generalized viscoelastic solid model. The evolution laws are integrated numerically with the implicit Euler scheme and linearized within the Newton-Raphson scheme of the nonlinear finite element framework. The implementation of surface and bending viscosity is verified with the help of analytical solutions and shows ideal convergence behavior. The chosen numerical examples capture large deformations and typical viscoelasticity behavior, such as creep, relaxation, and strain rate dependence. It is shown that the proposed formulation can also be straightforwardly applied to model boundary viscoelasticity of 3D bodies.

Approximate-message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing number of new iterations proposed for increasingly complex problems, ranging from multi-layer inference to low-rank matrix estimation with elaborate priors. In this paper, we address the following questions: is there a structure underlying all AMP iterations that unifies them in a common framework? Can we use such a structure to give a modular proof of state evolution equations, adaptable to new AMP iterations without reproducing each time the full argument ? We propose an answer to both questions, showing that AMP instances can be generically indexed by an oriented graph. This enables to give a unified interpretation of these iterations, independent from the problem they solve, and a way of composing them arbitrarily. We then show that all AMP iterations indexed by such a graph admit rigorous SE equations, extending the reach of previous proofs, and proving a number of recent heuristic derivations of those equations. Our proof naturally includes non-separable functions and we show how existing refinements, such as spatial coupling or matrix-valued variables, can be combined with our framework.

We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.

In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.

Given two strings $T$ and $S$ and a set of strings $P$, for each string $p \in P$, consider the unique substrings of $T$ that have $p$ as their prefix and $S$ as their suffix. Two problems then come to mind; the first problem being the counting of such substrings, and the second problem being the problem of listing all such substrings. In this paper, we describe linear-time, linear-space suffix tree-based algorithms for both problems. More specifically, we describe an $O(|T| + |P|)$ time algorithm for the counting problem, and an $O(|T| + |P| + \#(ans))$ time algorithm for the listing problem, where $\#(ans)$ refers to the number of strings being listed in total, and $|P|$ refers to the total length of the strings in $P$. We also consider the reversed version of the problems, where one prefix condition string and multiple suffix condition strings are given instead, and similarly describe linear-time, linear-space algorithms to solve them.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

Implementation of many statistical methods for large, multivariate data sets requires one to solve a linear system that, depending on the method, is of the dimension of the number of observations or each individual data vector. This is often the limiting factor in scaling the method with data size and complexity. In this paper we illustrate the use of Krylov subspace methods to address this issue in a statistical solution to a source separation problem in cosmology where the data size is prohibitively large for direct solution of the required system. Two distinct approaches are described: one that uses the method of conjugate gradients directly to the Kronecker-structured problem and another that reformulates the system as a Sylvester matrix equation. We show that both approaches produce an accurate solution within an acceptable computation time and with practical memory requirements for the data size that is currently available.

Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.

We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

北京阿比特科技有限公司