亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-based tactile sensors equipped with planar contact structures acquire the shape, force, and motion states of objects in contact. The limited planar contact area presents a challenge in acquiring information about larger target objects. In contrast, vision-based tactile sensors with cylindrical contact structures could extend the contact area by rolling, which can acquire much tactile information that exceeds the sensing projection area in a single contact. However, the tactile data acquired by cylindrical structures does not consistently correspond to the same depth level. Therefore, stitching and analyzing the data in an extended contact area is a challenging problem. In this work, we propose an image fusion method based on cylindrical vision-based tactile sensors. The method takes advantage of the changing characteristics of the contact depth of cylindrical structures, extracts the effective information of different contact depths in the frequency domain, and performs differential fusion for the information characteristics. The results show that in object contact confronting an area larger than single sensing, the images fused with our proposed method have higher information and structural similarity compared with the method of stitching based on motion distance sampling. Meanwhile, it is robust to sampling time. We complement this method with a deep neural network to illustrate its potential for fusing and recognizing object contact information using cylindrical vision-based tactile sensors.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 潛在 · Processing(編程語言) · Learning · 潛變量/隱變量 ·
2023 年 12 月 26 日

Continuously-observed event occurrences, often exhibit self- and mutually-exciting effects, which can be well modeled using temporal point processes. Beyond that, these event dynamics may also change over time, with certain periodic trends. We propose a novel variational auto-encoder to capture such a mixture of temporal dynamics. More specifically, the whole time interval of the input sequence is partitioned into a set of sub-intervals. The event dynamics are assumed to be stationary within each sub-interval, but could be changing across those sub-intervals. In particular, we use a sequential latent variable model to learn a dependency graph between the observed dimensions, for each sub-interval. The model predicts the future event times, by using the learned dependency graph to remove the noncontributing influences of past events. By doing so, the proposed model demonstrates its higher accuracy in predicting inter-event times and event types for several real-world event sequences, compared with existing state of the art neural point processes.

Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at //github.com/JerryOctopus/NLOS-LTM.

Age of Information (AoI) has been proposed to quantify the freshness of information for emerging real-time applications such as remote monitoring and control in wireless networked control systems (WNCSs). Minimization of the average AoI and its outage probability can ensure timely and stable transmission. Energy efficiency (EE) also plays an important role in WNCSs, as many devices are featured by low cost and limited battery. Multi-connectivity over multiple links enables a decrease in AoI, at the cost of energy. We tackle the unresolved problem of selecting the optimal number of connections that is both AoI-optimal and energy-efficient, while avoiding risky states. To address this issue, the average AoI and peak AoI (PAoI), as well as PAoI violation probability are formulated as functions of the number of connections. Then the EE-PAoI ratio is introduced to allow a tradeoff between AoI and energy, which is maximized by the proposed risk-aware, AoI-optimal and energy-efficient connectivity scheme. To obtain this, we analyze the property of the formulated EE-PAoI ratio and prove the monotonicity of PAoI violation probability. Interestingly, we reveal that the multi-connectivity scheme is not always preferable, and the signal-to-noise ratio (SNR) threshold that determines the selection of the multi-connectivity scheme is derived as a function of the coding rate. Also, the optimal number of connections is obtained and shown to be a decreasing function of the transmit power. Simulation results demonstrate that the proposed scheme enables more than 15 folds of EE-PAoI gain at the low SNR than the single-connectivity scheme.

We consider optimal experimental design (OED) for nonlinear Bayesian inverse problems governed by large-scale partial differential equations (PDEs). For the optimality criteria of Bayesian OED, we consider both expected information gain and summary statistics including the trace and determinant of the information matrix that involves the evaluation of the parameter-to-observable (PtO) map and its derivatives. However, it is prohibitive to compute and optimize these criteria when the PDEs are very expensive to solve, the parameters to estimate are high-dimensional, and the optimization problem is combinatorial, high-dimensional, and non-convex. To address these challenges, we develop an accurate, scalable, and efficient computational framework to accelerate the solution of Bayesian OED. In particular, the framework is developed based on derivative-informed neural operator (DINO) surrogates with proper dimension reduction techniques and a modified swapping greedy algorithm. We demonstrate the high accuracy of the DINO surrogates in the computation of the PtO map and the optimality criteria compared to high-fidelity finite element approximations. We also show that the proposed method is scalable with increasing parameter dimensions. Moreover, we demonstrate that it achieves high efficiency with over 1000X speedup compared to a high-fidelity Bayesian OED solution for a three-dimensional PDE example with tens of thousands of parameters, including both online evaluation and offline construction costs of the surrogates.

We present a compositional semantics for various types of polar questions and wh-questions within the framework of Combinatory Categorial Grammar (CCG). To assess the explanatory power of our proposed analysis, we introduce a question-answering dataset QSEM specifically designed to evaluate the semantics of interrogative sentences. We implement our analysis using existing CCG parsers and conduct evaluations using the dataset. Through the evaluation, we have obtained annotated data with CCG trees and semantic representations for about half of the samples included in QSEM. Furthermore, we discuss the discrepancy between the theoretical capacity of CCG and the capabilities of existing CCG parsers.

Meta-Bayesian optimisation (meta-BO) aims to improve the sample efficiency of Bayesian optimisation by leveraging data from related tasks. While previous methods successfully meta-learn either a surrogate model or an acquisition function independently, joint training of both components remains an open challenge. This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures. We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data. Early on, we notice that training transformer-based neural processes from scratch with RL is challenging due to insufficient supervision, especially when rewards are sparse. We formalise this claim with a combinatorial analysis showing that the widely used notion of regret as a reward signal exhibits a logarithmic sparsity pattern in trajectory lengths. To tackle this problem, we augment the RL objective with an auxiliary task that guides part of the architecture to learn a valid probabilistic model as an inductive bias. We demonstrate that our method achieves state-of-the-art regret results against various baselines in experiments on standard hyperparameter optimisation tasks and also outperforms others in the real-world problems of mixed-integer programming tuning, antibody design, and logic synthesis for electronic design automation.

Grasping compliant objects is difficult for robots -- applying too little force may cause the grasp to fail, while too much force may lead to object damage. A robot needs to apply the right amount of force to quickly and confidently grasp the objects so that it can perform the required task. Although some methods have been proposed to tackle this issue, performance assessment is still a problem for directly measuring object property changes and possible damage. To fill the gap, a new concept is introduced in this paper to assess compliant robotic grasping using instrumented objects. A proof-of-concept design is proposed to measure the force applied on a cuboid object from a first-object perspective. The design can detect multiple contact locations and applied forces on its surface by using multiple embedded 3D Hall sensors to detect deformation relative to embedded magnets. The contact estimation is achieved by interpreting the Hall-effect signals using neural networks. In comprehensive experiments, the design achieved good performance in estimating contacts from each single face of the cuboid and decent performance in detecting contacts from multiple faces when being used to evaluate grasping from a parallel jaw gripper, demonstrating the effectiveness of the design and the feasibility of the concept.

We study the use of a deep Gaussian process (DGP) prior in a general nonlinear inverse problem satisfying certain regularity conditions. We prove that when the data arises from a true parameter $\theta^*$ with a compositional structure, the posterior induced by the DGP prior concentrates around $\theta^*$ as the number of observations increases. The DGP prior accounts for the unknown compositional structure through the use of a hierarchical structure prior. As examples, we show that our results apply to Darcy's problem of recovering the scalar diffusivity from a steady-state heat equation and the problem of determining the attenuation potential in a steady-state Schr\"{o}dinger equation. We further provide a lower bound, proving in Darcy's problem that typical Gaussian priors based on Whittle-Mat\'{e}rn processes (which ignore compositional structure) contract at a polynomially slower rate than the DGP prior for certain diffusivities arising from a generalised additive model.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司