While the long-term effects of COVID-19 are yet to be determined, its immediate impact on crowdfunding is nonetheless significant. This study takes a computational approach to more deeply comprehend this change. Using a unique data set of all the campaigns published over the past two years on GoFundMe, we explore the factors that have led to the successful funding of a crowdfunding project. In particular, we study a corpus of crowdfunded projects, analyzing cover images and other variables commonly present on crowdfunding sites. Furthermore, we construct a classifier and a regression model to assess the significance of features based on XGBoost. In addition, we employ counterfactual analysis to investigate the causality between features and the success of crowdfunding. More importantly, sentiment analysis and the paired sample t-test are performed to examine the differences in crowdfunding campaigns before and after the COVID-19 outbreak that started in March 2020. First, we note that there is significant racial disparity in crowdfunding success. Second, we find that sad emotion expressed through the campaign's description became significant after the COVID-19 outbreak. Considering all these factors, our findings shed light on the impact of COVID-19 on crowdfunding campaigns.
Since the World Health Organization announced the COVID-19 pandemic in March 2020, curbing the spread of the virus has become an international priority. It has greatly affected people's lifestyles. In this article, we observe and analyze the impact of the pandemic on people's lives using changes in smartphone application usage. First, through observing the daily usage change trends of all users during the pandemic, we can understand and analyze the effects of restrictive measures and policies during the pandemic on people's lives. In addition, it is also helpful for the government and health departments to take more appropriate restrictive measures in the case of future pandemics. Second, we defined the usage change features and found 9 different usage change patterns during the pandemic according to clusters of users and show the diversity of daily usage changes. It helps to understand and analyze the different impacts of the pandemic and restrictive measures on different types of people in more detail. Finally, according to prediction models, we discover the main related factors of each usage change type from user preferences and demographic information. It helps to predict changes in smartphone activity during future pandemics or when other restrictive measures are implemented, which may become a new indicator to judge and manage the risks of measures or events.
This transformation of food delivery businesses to online platforms has gained high attention in recent years. This due to the availability of customizing ordering experiences, easy payment methods, fast delivery, and others. The competition between online food delivery providers has intensified to attain a wider range of customers. Hence, they should have a better understanding of their customers' needs and predict their purchasing decisions. Machine learning has a significant impact on companies' bottom line. They are used to construct models and strategies in industries that rely on big data and need a system to evaluate it fast and effectively. Predictive modeling is a type of machine learning that uses various regression algorithms, analytics, and statistics to estimate the probability of an occurrence. The incorporation of predictive models helps online food delivery providers to understand their customers. In this study, a dataset collected from 388 consumers in Bangalore, India was provided to predict their purchasing decisions. Four prediction models are considered: CART and C4.5 decision trees, random forest, and rule-based classifiers, and their accuracies in providing the correct class label are evaluated. The findings show that all models perform similarly, but the C4.5 outperforms them all with an accuracy of 91.67%.
Previous studies have found that nudging is key to promoting altruism in human-human interaction. However, in social robotics, there is still a lack of study on confirming the effect of nudging on altruism. In this paper, we apply two nudge mechanisms, peak-end and multiple viewpoints, to a video stimulus performed by social robots (virtual agents) to see whether a subtle change in the stimulus can promote human altruism. An experiment was conducted online through crowdsourcing with 136 participants. The result shows that the participants who watched the peak part set at the end of the video performed better at the Dictator game, which means that the nudge mechanism of the peak-end effect actually promoted human altruism.
Crowdsourcing markets provide workers with a centralized place to find paid work. What may not be obvious at first glance is that, in addition to the work they do for pay, crowd workers also have to shoulder a variety of unpaid invisible labor in these markets, which ultimately reduces workers' hourly wages. Invisible labor includes finding good tasks, messaging requesters, or managing payments. However, we currently know little about how much time crowd workers actually spend on invisible labor or how much it costs them economically. To ensure a fair and equitable future for crowd work, we need to be certain that workers are being paid fairly for all of the work they do. In this paper, we conduct a field study to quantify the invisible labor in crowd work. We build a plugin to record the amount of time that 100 workers on Amazon Mechanical Turk dedicate to invisible labor while completing 40,903 tasks. If we ignore the time workers spent on invisible labor, workers' median hourly wage was $3.76. But, we estimated that crowd workers in our study spent 33% of their time daily on invisible labor, dropping their median hourly wage to $2.83. We found that the invisible labor differentially impacts workers depending on their skill level and workers' demographics. The invisible labor category that took the most time and that was also the most common revolved around workers having to manage their payments. The second most time-consuming invisible labor category involved hyper-vigilance, where workers vigilantly watched over requesters' profiles for newly posted work or vigilantly searched for labor. We hope that through our paper, the invisible labor in crowdsourcing becomes more visible, and our results help to reveal the larger implications of the continuing invisibility of labor in crowdsourcing.
Recently, interest has grown in applying machine learning to the problem of table structure inference and extraction from unstructured documents. However, progress in this area has been challenging both to make and to measure, due to several issues that arise in training and evaluating models from labeled data. This includes challenges as fundamental as the lack of a single definitive ground truth output for each input sample and the lack of an ideal metric for measuring partial correctness for this task. To address these we propose a new dataset, PubMed Tables One Million (PubTables-1M), and a new class of metric, grid table similarity (GriTS). PubTables-1M is nearly twice as large as the previous largest comparable dataset, can be used for models across multiple architectures and modalities, and addresses issues such as ambiguity and lack of consistency in the annotations. We apply DETR to table extraction for the first time and show that object detection models trained on PubTables-1M produce excellent results out-of-the-box for all three tasks of detection, structure recognition, and functional analysis. We describe the dataset in detail to enable others to build on our work and combine this data with other datasets for these and related tasks. It is our hope that PubTables-1M and the proposed metrics can further progress in this area by creating a benchmark suitable for training and evaluating a wide variety of models for table extraction. Data and code will be released at //github.com/microsoft/table-transformer.
The problem of knowledge-based visual question answering involves answering questions that require external knowledge in addition to the content of the image. Such knowledge typically comes in a variety of forms, including visual, textual, and commonsense knowledge. The use of more knowledge sources, however, also increases the chance of retrieving more irrelevant or noisy facts, making it difficult to comprehend the facts and find the answer. To address this challenge, we propose Multi-modal Answer Validation using External knowledge (MAVEx), where the idea is to validate a set of promising answer candidates based on answer-specific knowledge retrieval. This is in contrast to existing approaches that search for the answer in a vast collection of often irrelevant facts. Our approach aims to learn which knowledge source should be trusted for each answer candidate and how to validate the candidate using that source. We consider a multi-modal setting, relying on both textual and visual knowledge resources, including images searched using Google, sentences from Wikipedia articles, and concepts from ConceptNet. Our experiments with OK-VQA, a challenging knowledge-based VQA dataset, demonstrate that MAVEx achieves new state-of-the-art results.
BERT-based architectures currently give state-of-the-art performance on many NLP tasks, but little is known about the exact mechanisms that contribute to its success. In the current work, we focus on the interpretation of self-attention, which is one of the fundamental underlying components of BERT. Using a subset of GLUE tasks and a set of handcrafted features-of-interest, we propose the methodology and carry out a qualitative and quantitative analysis of the information encoded by the individual BERT's heads. Our findings suggest that there is a limited set of attention patterns that are repeated across different heads, indicating the overall model overparametrization. While different heads consistently use the same attention patterns, they have varying impact on performance across different tasks. We show that manually disabling attention in certain heads leads to a performance improvement over the regular fine-tuned BERT models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
A popular recent approach to answering open-domain questions is to first search for question-related passages and then apply reading comprehension models to extract answers. Existing methods usually extract answers from single passages independently. But some questions require a combination of evidence from across different sources to answer correctly. In this paper, we propose two models which make use of multiple passages to generate their answers. Both use an answer-reranking approach which reorders the answer candidates generated by an existing state-of-the-art QA model. We propose two methods, namely, strength-based re-ranking and coverage-based re-ranking, to make use of the aggregated evidence from different passages to better determine the answer. Our models have achieved state-of-the-art results on three public open-domain QA datasets: Quasar-T, SearchQA and the open-domain version of TriviaQA, with about 8 percentage points of improvement over the former two datasets.
Deep models that are both effective and explainable are desirable in many settings; prior explainable models have been unimodal, offering either image-based visualization of attention weights or text-based generation of post-hoc justifications. We propose a multimodal approach to explanation, and argue that the two modalities provide complementary explanatory strengths. We collect two new datasets to define and evaluate this task, and propose a novel model which can provide joint textual rationale generation and attention visualization. Our datasets define visual and textual justifications of a classification decision for activity recognition tasks (ACT-X) and for visual question answering tasks (VQA-X). We quantitatively show that training with the textual explanations not only yields better textual justification models, but also better localizes the evidence that supports the decision. We also qualitatively show cases where visual explanation is more insightful than textual explanation, and vice versa, supporting our thesis that multimodal explanation models offer significant benefits over unimodal approaches.