亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This transformation of food delivery businesses to online platforms has gained high attention in recent years. This due to the availability of customizing ordering experiences, easy payment methods, fast delivery, and others. The competition between online food delivery providers has intensified to attain a wider range of customers. Hence, they should have a better understanding of their customers' needs and predict their purchasing decisions. Machine learning has a significant impact on companies' bottom line. They are used to construct models and strategies in industries that rely on big data and need a system to evaluate it fast and effectively. Predictive modeling is a type of machine learning that uses various regression algorithms, analytics, and statistics to estimate the probability of an occurrence. The incorporation of predictive models helps online food delivery providers to understand their customers. In this study, a dataset collected from 388 consumers in Bangalore, India was provided to predict their purchasing decisions. Four prediction models are considered: CART and C4.5 decision trees, random forest, and rule-based classifiers, and their accuracies in providing the correct class label are evaluated. The findings show that all models perform similarly, but the C4.5 outperforms them all with an accuracy of 91.67%.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · Haskell · Better · 社會媒體處理 ·
2021 年 11 月 24 日

Dataflow applications, such as machine learning algorithms, can run for days, making it desirable to have assurances that they will work correctly. Current tools are not good enough: too often the interactions between tasks are not type-safe, leading to undesirable run-time errors. This paper presents a new declarative Haskell Embedded DSL (eDSL) for dataflow programming: CircuitFlow. Defined as a Symmetric Monoidal Preorder (SMP) on data that models dependencies in the workflow, it has a strong mathematical basis, refocusing on how data flows through an application, resulting in a more expressive solution that not only catches errors statically, but also achieves competitive run-time performance. In our preliminary evaluation, CircuitFlow outperforms the industry-leading Luigi library of Spotify by scaling better with the number of inputs. The innovative creation of CircuitFlow is also of note, exemplifying how to create a modular eDSL whose semantics necessitates effects, and where storing complex type information for program correctness is paramount.

The increasing concerns about data privacy and security drive an emerging field of studying privacy-preserving machine learning from isolated data sources, i.e., federated learning. A class of federated learning, \textit{vertical federated learning}, where different parties hold different features for common users, has a great potential of driving a great variety of business cooperation among enterprises in many fields. In machine learning, decision tree ensembles such as gradient boosting decision trees (GBDT) and random forest are widely applied powerful models with high interpretability and modeling efficiency. However, state-of-art vertical federated learning frameworks adapt anonymous features to avoid possible data breaches, makes the interpretability of the model compromised. To address this issue in the inference process, in this paper, we firstly make a problem analysis about the necessity of disclosure meanings of feature to Guest Party in vertical federated learning. Then we find the prediction result of a tree could be expressed as the intersection of results of sub-models of the tree held by all parties. With this key observation, we protect data privacy and allow the disclosure of feature meaning by concealing decision paths and adapt a communication-efficient secure computation method for inference outputs. The advantages of Fed-EINI will be demonstrated through both theoretical analysis and extensive numerical results. We improve the interpretability of the model by disclosing the meaning of features while ensuring efficiency and accuracy.

Devising optimal operating strategies for a compressor station relies on the knowledge of compressor characteristics. As the compressor characteristics change with time and use, it is necessary to provide accurate models of the characteristics that can be used in optimization of the operating strategy. This paper proposes a new algorithm for online learning of the characteristics of the compressors using Gaussian Processes. The performance of the new approximation is shown in a case study with three compressors. The case study shows that Gaussian Processes accurately capture the characteristics of compressors even if no knowledge about the characteristics is initially available. The results show that the flexible nature of Gaussian Processes allows them to adapt to the data online making them amenable for use in real-time optimization problems.

In recommender systems, modeling user-item behaviors is essential for user representation learning. Existing sequential recommenders consider the sequential correlations between historically interacted items for capturing users' historical preferences. However, since users' preferences are by nature time-evolving and diversified, solely modeling the historical preference (without being aware of the time-evolving trends of preferences) can be inferior for recommending complementary or fresh items and thus hurt the effectiveness of recommender systems. In this paper, we bridge the gap between the past preference and potential future preference by proposing the future-aware diverse trends (FAT) framework. By future-aware, for each inspected user, we construct the future sequences from other similar users, which comprise of behaviors that happen after the last behavior of the inspected user, based on a proposed neighbor behavior extractor. By diverse trends, supposing the future preferences can be diversified, we propose the diverse trends extractor and the time-aware mechanism to represent the possible trends of preferences for a given user with multiple vectors. We leverage both the representations of historical preference and possible future trends to obtain the final recommendation. The quantitative and qualitative results from relatively extensive experiments on real-world datasets demonstrate the proposed framework not only outperforms the state-of-the-art sequential recommendation methods across various metrics, but also makes complementary and fresh recommendations.

Incorporating knowledge graph (KG) into recommender system is promising in improving the recommendation accuracy and explainability. However, existing methods largely assume that a KG is complete and simply transfer the "knowledge" in KG at the shallow level of entity raw data or embeddings. This may lead to suboptimal performance, since a practical KG can hardly be complete, and it is common that a KG has missing facts, relations, and entities. Thus, we argue that it is crucial to consider the incomplete nature of KG when incorporating it into recommender system. In this paper, we jointly learn the model of recommendation and knowledge graph completion. Distinct from previous KG-based recommendation methods, we transfer the relation information in KG, so as to understand the reasons that a user likes an item. As an example, if a user has watched several movies directed by (relation) the same person (entity), we can infer that the director relation plays a critical role when the user makes the decision, thus help to understand the user's preference at a finer granularity. Technically, we contribute a new translation-based recommendation model, which specially accounts for various preferences in translating a user to an item, and then jointly train it with a KG completion model by combining several transfer schemes. Extensive experiments on two benchmark datasets show that our method outperforms state-of-the-art KG-based recommendation methods. Further analysis verifies the positive effect of joint training on both tasks of recommendation and KG completion, and the advantage of our model in understanding user preference. We publish our project at //github.com/TaoMiner/joint-kg-recommender.

Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationship between items, which are insufficient to capture the complicated decision-making process of users. In this work, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationship among items. Going beyond modeling only the second-order interaction (e.g. similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. Through this way, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.

Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.

Recommender systems rely on large datasets of historical data and entail serious privacy risks. A server offering recommendations as a service to a client might leak more information than necessary regarding its recommendation model and training dataset. At the same time, the disclosure of the client's preferences to the server is also a matter of concern. Providing recommendations while preserving privacy in both senses is a difficult task, which often comes into conflict with the utility of the system in terms of its recommendation-accuracy and efficiency. Widely-purposed cryptographic primitives such as secure multi-party computation and homomorphic encryption offer strong security guarantees, but in conjunction with state-of-the-art recommender systems yield far-from-practical solutions. We precisely define the above notion of security and propose CryptoRec, a novel recommendations-as-a-service protocol, which encompasses a crypto-friendly recommender system. This model possesses two interesting properties: (1) It models user-item interactions in a user-free latent feature space in which it captures personalized user features by an aggregation of item features. This means that a server with a pre-trained model can provide recommendations for a client without having to re-train the model with the client's preferences. Nevertheless, re-training the model still improves accuracy. (2) It only uses addition and multiplication operations, making the model straightforwardly compatible with homomorphic encryption schemes.

北京阿比特科技有限公司