亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dataflow applications, such as machine learning algorithms, can run for days, making it desirable to have assurances that they will work correctly. Current tools are not good enough: too often the interactions between tasks are not type-safe, leading to undesirable run-time errors. This paper presents a new declarative Haskell Embedded DSL (eDSL) for dataflow programming: CircuitFlow. Defined as a Symmetric Monoidal Preorder (SMP) on data that models dependencies in the workflow, it has a strong mathematical basis, refocusing on how data flows through an application, resulting in a more expressive solution that not only catches errors statically, but also achieves competitive run-time performance. In our preliminary evaluation, CircuitFlow outperforms the industry-leading Luigi library of Spotify by scaling better with the number of inputs. The innovative creation of CircuitFlow is also of note, exemplifying how to create a modular eDSL whose semantics necessitates effects, and where storing complex type information for program correctness is paramount.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 統計量 · 近似 · · 可約的 ·
2022 年 1 月 28 日

Approximate Bayesian computation (ABC) is a popular likelihood-free inference method for models with intractable likelihood functions. As ABC methods usually rely on comparing summary statistics of observed and simulated data, the choice of the statistics is crucial. This choice involves a trade-off between loss of information and dimensionality reduction, and is often determined based on domain knowledge. However, handcrafting and selecting suitable statistics is a laborious task involving multiple trial-and-error steps. In this work, we introduce an active learning method for ABC statistics selection which reduces the domain expert's work considerably. By involving the experts, we are able to handle misspecified models, unlike the existing dimension reduction methods. Moreover, empirical results show better posterior estimates than with existing methods, when the simulation budget is limited.

Distributed dataflow systems like Spark and Flink enable the use of clusters for scalable data analytics. While runtime prediction models can be used to initially select appropriate cluster resources given target runtimes, the actual runtime performance of dataflow jobs depends on several factors and varies over time. Yet, in many situations, dynamic scaling can be used to meet formulated runtime targets despite significant performance variance. This paper presents Enel, a novel dynamic scaling approach that uses message propagation on an attributed graph to model dataflow jobs and, thus, allows for deriving effective rescaling decisions. For this, Enel incorporates descriptive properties that capture the respective execution context, considers statistics from individual dataflow tasks, and propagates predictions through the job graph to eventually find an optimized new scale-out. Our evaluation of Enel with four iterative Spark jobs shows that our approach is able to identify effective rescaling actions, reacting for instance to node failures, and can be reused across different execution contexts.

Both logic programming in general, and Prolog in particular, have a long and fascinating history, intermingled with that of many disciplines they inherited from or catalyzed. A large body of research has been gathered over the last 50 years, supported by many Prolog implementations. Many implementations are still actively developed, while new ones keep appearing. Often, the features added by different systems were motivated by the interdisciplinary needs of programmers and implementors, yielding systems that, while sharing the "classic" core language, and, in particular, the main aspects of the ISO-Prolog standard, also depart from each other in other aspects. This obviously poses challenges for code portability. The field has also inspired many related, but quite different languages that have created their own communities. This article aims at integrating and applying the main lessons learned in the process of evolution of Prolog. It is structured into three major parts. Firstly, we overview the evolution of Prolog systems and the community approximately up to the ISO standard, considering both the main historic developments and the motivations behind several Prolog implementations, as well as other logic programming languages influenced by Prolog. Then, we discuss the Prolog implementations that are most active after the appearance of the standard: their visions, goals, commonalities, and incompatibilities. Finally, we perform a SWOT analysis in order to better identify the potential of Prolog, and propose future directions along which Prolog might continue to add useful features, interfaces, libraries, and tools, while at the same time improving compatibility between implementations.

Fine-tuned pre-trained language models (PLMs) have achieved awesome performance on almost all NLP tasks. By using additional prompts to fine-tune PLMs, we can further stimulate the rich knowledge distributed in PLMs to better serve downstream task. Prompt tuning has achieved promising results on some few-class classification tasks such as sentiment classification and natural language inference. However, manually designing lots of language prompts is cumbersome and fallible. For those auto-generated prompts, it is also expensive and time-consuming to verify their effectiveness in non-few-shot scenarios. Hence, it is challenging for prompt tuning to address many-class classification tasks. To this end, we propose prompt tuning with rules (PTR) for many-class text classification, and apply logic rules to construct prompts with several sub-prompts. In this way, PTR is able to encode prior knowledge of each class into prompt tuning. We conduct experiments on relation classification, a typical many-class classification task, and the results on benchmarks show that PTR can significantly and consistently outperform existing state-of-the-art baselines. This indicates that PTR is a promising approach to take advantage of PLMs for those complicated classification tasks.

The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.

Topic models are among the most widely used methods in natural language processing, allowing researchers to estimate the underlying themes in a collection of documents. Most topic models use unsupervised methods and hence require the additional step of attaching meaningful labels to estimated topics. This process of manual labeling is not scalable and often problematic because it depends on the domain expertise of the researcher and may be affected by cardinality in human decision making. As a consequence, insights drawn from a topic model are difficult to replicate. We present a semi-automatic transfer topic labeling method that seeks to remedy some of these problems. We take advantage of the fact that domain-specific codebooks exist in many areas of research that can be exploited for automated topic labeling. We demonstrate our approach with a dynamic topic model analysis of the complete corpus of UK House of Commons speeches from 1935 to 2014, using the coding instructions of the Comparative Agendas Project to label topics. We show that our method works well for a majority of the topics we estimate, but we also find institution-specific topics, in particular on subnational governance, that require manual input. The method proposed in the paper can be easily extended to other areas with existing domain-specific knowledge bases, such as party manifestos, open-ended survey questions, social media data, and legal documents, in ways that can add knowledge to research programs.

Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that word co-occurrence statistics change continuously and therefore impose continuous stochastic process priors on their model parameters. These dynamical priors make inference much harder than in regular topic models, and also limit scalability. In this paper, we present several new results around DTMs. First, we extend the class of tractable priors from Wiener processes to the generic class of Gaussian processes (GPs). This allows us to explore topics that develop smoothly over time, that have a long-term memory or are temporally concentrated (for event detection). Second, we show how to perform scalable approximate inference in these models based on ideas around stochastic variational inference and sparse Gaussian processes. This way we can train a rich family of DTMs to massive data. Our experiments on several large-scale datasets show that our generalized model allows us to find interesting patterns that were not accessible by previous approaches.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

Are we using the right potential functions in the Conditional Random Field models that are popular in the Vision community? Semantic segmentation and other pixel-level labelling tasks have made significant progress recently due to the deep learning paradigm. However, most state-of-the-art structured prediction methods also include a random field model with a hand-crafted Gaussian potential to model spatial priors, label consistencies and feature-based image conditioning. In this paper, we challenge this view by developing a new inference and learning framework which can learn pairwise CRF potentials restricted only by their dependence on the image pixel values and the size of the support. Both standard spatial and high-dimensional bilateral kernels are considered. Our framework is based on the observation that CRF inference can be achieved via projected gradient descent and consequently, can easily be integrated in deep neural networks to allow for end-to-end training. It is empirically demonstrated that such learned potentials can improve segmentation accuracy and that certain label class interactions are indeed better modelled by a non-Gaussian potential. In addition, we compare our inference method to the commonly used mean-field algorithm. Our framework is evaluated on several public benchmarks for semantic segmentation with improved performance compared to previous state-of-the-art CNN+CRF models.

The pre-dominant approach to language modeling to date is based on recurrent neural networks. Their success on this task is often linked to their ability to capture unbounded context. In this paper we develop a finite context approach through stacked convolutions, which can be more efficient since they allow parallelization over sequential tokens. We propose a novel simplified gating mechanism that outperforms Oord et al (2016) and investigate the impact of key architectural decisions. The proposed approach achieves state-of-the-art on the WikiText-103 benchmark, even though it features long-term dependencies, as well as competitive results on the Google Billion Words benchmark. Our model reduces the latency to score a sentence by an order of magnitude compared to a recurrent baseline. To our knowledge, this is the first time a non-recurrent approach is competitive with strong recurrent models on these large scale language tasks.

北京阿比特科技有限公司