Complexity classes defined by modifying the acceptance condition of NP computations have been extensively studied. For example, the class UP, which contains decision problems solvable by non-deterministic polynomial-time Turing machines (NPTMs) with at most one accepting path -- equivalently NP problems with at most one solution -- has played a significant role in cryptography, since P=/=UP is equivalent to the existence of one-way functions. In this paper, we define and examine variants of several such classes where the acceptance condition concerns the total number of computation paths of an NPTM, instead of the number of accepting ones. This direction reflects the relationship between the counting classes #P and TotP, which are the classes of functions that count the number of accepting paths and the total number of paths of NPTMs, respectively. The former is the well-studied class of counting versions of NP problems, introduced by Valiant (1979). The latter contains all self-reducible counting problems in #P whose decision version is in P, among them prominent #P-complete problems such as Non-negative Permanent, #PerfMatch, and #Dnf-Sat, thus playing a significant role in the study of approximable counting problems. We show that almost all classes introduced in this work coincide with their '# accepting paths'-definable counterparts. As a result, we present a novel family of complete problems for the classes parity-P, Modkp, SPP, WPP, C=P, and PP that are defined via TotP-complete problems under parsimonious reductions.
In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense. The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense.
We explore a link between complexity and physics for circuits of given functionality. Taking advantage of the connection between circuit counting problems and the derivation of ensembles in statistical mechanics, we tie the entropy of circuits of a given functionality and fixed number of gates to circuit complexity. We use thermodynamic relations to connect the quantity analogous to the equilibrium temperature to the exponent describing the exponential growth of the number of distinct functionalities as a function of complexity. This connection is intimately related to the finite compressibility of typical circuits. Finally, we use the thermodynamic approach to formulate a framework for the obfuscation of programs of arbitrary length -- an important problem in cryptography -- as thermalization through recursive mixing of neighboring sections of a circuit, which can viewed as the mixing of two containers with ``gases of gates''. This recursive process equilibrates the average complexity and leads to the saturation of the circuit entropy, while preserving functionality of the overall circuit. The thermodynamic arguments hinge on ergodicity in the space of circuits which we conjecture is limited to disconnected ergodic sectors due to fragmentation. The notion of fragmentation has important implications for the problem of circuit obfuscation as it implies that there are circuits with same size and functionality that cannot be connected via local moves. Furthermore, we argue that fragmentation is unavoidable unless the complexity classes NP and coNP coincide, a statement that implies the collapse of the polynomial hierarchy of complexity theory to its first level.
Tukey's depth (or halfspace depth) is a widely used measure of centrality for multivariate data. However, exact computation of Tukey's depth is known to be a hard problem in high dimensions. As a remedy, randomized approximations of Tukey's depth have been proposed. In this paper we explore when such randomized algorithms return a good approximation of Tukey's depth. We study the case when the data are sampled from a log-concave isotropic distribution. We prove that, if one requires that the algorithm runs in polynomial time in the dimension, the randomized algorithm correctly approximates the maximal depth $1/2$ and depths close to zero. On the other hand, for any point of intermediate depth, any good approximation requires exponential complexity.
This paper presents a novel approach to construct regularizing operators for severely ill-posed Fredholm integral equations of the first kind by introducing parametrized discretization. The optimal values of discretization and regularization parameters are computed simultaneously by solving a minimization problem formulated based on a regularization parameter search criterion. The effectiveness of the proposed approach is demonstrated through examples of noisy Laplace transform inversions and the deconvolution of nuclear magnetic resonance relaxation data.
Fano varieties are basic building blocks in geometry - they are `atomic pieces' of mathematical shapes. Recent progress in the classification of Fano varieties involves analysing an invariant called the quantum period. This is a sequence of integers which gives a numerical fingerprint for a Fano variety. It is conjectured that a Fano variety is uniquely determined by its quantum period. If this is true, one should be able to recover geometric properties of a Fano variety directly from its quantum period. We apply machine learning to the question: does the quantum period of X know the dimension of X? Note that there is as yet no theoretical understanding of this. We show that a simple feed-forward neural network can determine the dimension of X with 98% accuracy. Building on this, we establish rigorous asymptotics for the quantum periods of a class of Fano varieties. These asymptotics determine the dimension of X from its quantum period. Our results demonstrate that machine learning can pick out structure from complex mathematical data in situations where we lack theoretical understanding. They also give positive evidence for the conjecture that the quantum period of a Fano variety determines that variety.
With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.
The problem of transmitting a parameter value over an additive white Gaussian noise (AWGN) channel is considered, where, in addition to the transmitter and the receiver, there is a helper that observes the noise non-causally and provides a description of limited rate $R_\mathrm{h}$ to the transmitter and/or the receiver. We derive upper and lower bounds on the optimal achievable $\alpha$-th moment of the estimation error and show that they coincide for small values of $\alpha$ and for low SNR values. The upper bound relies on a recently proposed channel-coding scheme that effectively conveys $R_\mathrm{h}$ bits essentially error-free and the rest of the rate - over the same AWGN channel without help, with the error-free bits allocated to the most significant bits of the quantized parameter. We then concentrate on the setting with a total transmit energy constraint, for which we derive achievability results for both channel coding and parameter modulation for several scenarios: when the helper assists only the transmitter or only the receiver and knows the noise, and when the helper assists the transmitter and/or the receiver and knows both the noise and the message. In particular, for the message-informed helper that assists both the receiver and the transmitter, it is shown that the error probability in the channel-coding task decays doubly exponentially. Finally, we translate these results to those for continuous-time power-limited AWGN channels with unconstrained bandwidth. As a byproduct, we show that the capacity with a message-informed helper that is available only at the transmitter can exceed the capacity of the same scenario when the helper knows only the noise but not the message.
We provide a construction of Gabor frames that encode local linearizations of a signal detected on a curved smooth manifold of arbitrary dimension, with Gabor filters that can detect the presence of higher-dimensional boundaries in the manifold signal. We describe an application in configuration spaces in robotics with sharp constrains. The construction is a higher-dimensional generalization of the geometric setting developed for the study of signal analysis in the visual cortex.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.