亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide a construction of Gabor frames that encode local linearizations of a signal detected on a curved smooth manifold of arbitrary dimension, with Gabor filters that can detect the presence of higher-dimensional boundaries in the manifold signal. We describe an application in configuration spaces in robotics with sharp constrains. The construction is a higher-dimensional generalization of the geometric setting developed for the study of signal analysis in the visual cortex.

相關內容

It is known that the generating function associated with the enumeration of non-backtracking walks on finite graphs is a rational matrix-valued function of the parameter; such function is also closely related to graph-theoretical results such as Ihara's theorem and the zeta function on graphs. In [P. Grindrod, D. J. Higham, V. Noferini, The deformed graph Laplacian and its application to network centrality analysis, SIAM J. Matrix Anal. Appl. 39(1), 310--341, 2018], the radius of convergence of the generating function was studied for simple (i.e., undirected, unweighted and with no loops) graphs, and shown to depend on the number of cycles in the graph. In this paper, we use technologies from the theory of polynomial and rational matrices to greatly extend these results by studying the radius of convergence of the corresponding generating function for general, possibly directed and/or weighted, graphs. We give an analogous characterization of the radius of convergence for directed unweighted graphs, showing that it depends on the number of cycles in the undirectization of the graph. For weighted graphs, we provide for the first time an exact formula for the radius of convergence, improving a previous result that exhibited a lower bound. Finally, we consider also backtracking-downweighted walks on unweighted digraphs, and we prove a version of Ihara's theorem in that case.

We propose an augmented Lagrangian-based preconditioner to accelerate the convergence of Krylov subspace methods applied to linear systems of equations with a block three-by-three structure such as those arising from mixed finite element discretizations of the coupled Stokes-Darcy flow problem. We analyze the spectrum of the preconditioned matrix and we show how the new preconditioner can be efficiently applied. Numerical experiments are reported to illustrate the effectiveness of the preconditioner in conjunction with flexible GMRES for solving linear systems of equations arising from a 3D test problem.

For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving (SSP) temporal discretizations, we show that the simple bound-preserving limiter in [Li H., Xie S., Zhang X., SIAM J. Numer. Anal., 56 (2018)]. can enforce the strict bounds of the vorticity, if the velocity field satisfies a discrete divergence free constraint. For reducing oscillations, a modified TVB limiter adapted from [Cockburn B., Shu CW., SIAM J. Numer. Anal., 31 (1994)] is constructed without affecting the bound-preserving property. This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.

Knowledge graphs contain rich semantic relationships related to items and incorporating such semantic relationships into recommender systems helps to explore the latent connections of items, thus improving the accuracy of prediction and enhancing the explainability of recommendations. However, such explainability is not adapted to users' contexts, which can significantly influence their preferences. In this work, we propose CA-KGCN (Context-Aware Knowledge Graph Convolutional Network), an end-to-end framework that can model users' preferences adapted to their contexts and can incorporate rich semantic relationships in the knowledge graph related to items. This framework captures users' attention to different factors: contexts and features of items. More specifically, the framework can model users' preferences adapted to their contexts and provide explanations adapted to the given context. Experiments on three real-world datasets show the effectiveness of our framework: modeling users' preferences adapted to their contexts and explaining the recommendations generated.

We introduce a nonlinear stochastic model reduction technique for high-dimensional stochastic dynamical systems that have a low-dimensional invariant effective manifold with slow dynamics, and high-dimensional, large fast modes. Given only access to a black box simulator from which short bursts of simulation can be obtained, we design an algorithm that outputs an estimate of the invariant manifold, a process of the effective stochastic dynamics on it, which has averaged out the fast modes, and a simulator thereof. This simulator is efficient in that it exploits of the low dimension of the invariant manifold, and takes time steps of size dependent on the regularity of the effective process, and therefore typically much larger than that of the original simulator, which had to resolve the fast modes. The algorithm and the estimation can be performed on-the-fly, leading to efficient exploration of the effective state space, without losing consistency with the underlying dynamics. This construction enables fast and efficient simulation of paths of the effective dynamics, together with estimation of crucial features and observables of such dynamics, including the stationary distribution, identification of metastable states, and residence times and transition rates between them.

Semantic communication, rather than on a bit-by-bit recovery of the transmitted messages, focuses on the meaning and the goal of the communication itself. In this paper, we propose a novel semantic image coding scheme that preserves the semantic content of an image, while ensuring a good trade-off between coding rate and image quality. The proposed Semantic-Preserving Image Coding based on Conditional Diffusion Models (SPIC) transmitter encodes a Semantic Segmentation Map (SSM) and a low-resolution version of the image to be transmitted. The receiver then reconstructs a high-resolution image using a Denoising Diffusion Probabilistic Models (DDPM) doubly conditioned to the SSM and the low-resolution image. As shown by the numerical examples, compared to state-of-the-art (SOTA) approaches, the proposed SPIC exhibits a better balance between the conventional rate-distortion trade-off and the preservation of semantically-relevant features.

Estimating the structure of directed acyclic graphs (DAGs) from observational data remains a significant challenge in machine learning. Most research in this area concentrates on learning a single DAG for the entire population. This paper considers an alternative setting where the graph structure varies across individuals based on available "contextual" features. We tackle this contextual DAG problem via a neural network that maps the contextual features to a DAG, represented as a weighted adjacency matrix. The neural network is equipped with a novel projection layer that ensures the output matrices are sparse and satisfy a recently developed characterization of acyclicity. We devise a scalable computational framework for learning contextual DAGs and provide a convergence guarantee and an analytical gradient for backpropagating through the projection layer. Our experiments suggest that the new approach can recover the true context-specific graph where existing approaches fail.

Neural oscillations are considered to be brain-specific signatures of information processing and communication in the brain. They also reflect pathological brain activity in neurological disorders, thus offering a basis for diagnoses and forecasting. Epilepsy is one of the most common neurological disorders, characterized by abnormal synchronization and desynchronization of the oscillations in the brain. About one third of epilepsy cases are pharmacoresistant, and as such emphasize the need for novel therapy approaches, where brain stimulation appears to be a promising therapeutic option. The development of brain stimulation paradigms, however, is often based on generalized assumptions about brain dynamics, although it is known that significant differences occur between patients and brain states. We developed a framework to extract individualized predictive models of epileptic network dynamics directly from EEG data. The models are based on the dominant coherent oscillations and their dynamical coupling, thus combining an established interpretation of dynamics through neural oscillations, with accurate patient-specific features. We show that it is possible to build a direct correspondence between the models of brain-network dynamics under periodic driving, and the mechanism of neural entrainment via periodic stimulation. When our framework is applied to EEG recordings of patients in status epilepticus (a brain state of perpetual seizure activity), it yields a model-driven predictive analysis of the therapeutic performance of periodic brain stimulation. This suggests that periodic brain stimulation can drive pathological states of epileptic network dynamics towards a healthy functional brain state.

Models of complex technological systems inherently contain interactions and dependencies among their input variables that affect their joint influence on the output. Such models are often computationally expensive and few sensitivity analysis methods can effectively process such complexities. Moreover, the sensitivity analysis field as a whole pays limited attention to the nature of interaction effects, whose understanding can prove to be critical for the design of safe and reliable systems. In this paper, we introduce and extensively test a simple binning approach for computing sensitivity indices and demonstrate how complementing it with the smart visualization method, simulation decomposition (SimDec), can permit important insights into the behavior of complex engineering models. The simple binning approach computes first-, second-order effects, and a combined sensitivity index, and is considerably more computationally efficient than Sobol' indices. The totality of the sensitivity analysis framework provides an efficient and intuitive way to analyze the behavior of complex systems containing interactions and dependencies.

Graph-based two-sample tests and graph-based change-point detection that utilize a similarity graph provide a powerful tool for analyzing high-dimensional and non-Euclidean data as these methods do not impose distributional assumptions on data and have good performance across various scenarios. Current graph-based tests that deliver efficacy across a broad spectrum of alternatives typically reply on the $K$-nearest neighbor graph or the $K$-minimum spanning tree. However, these graphs can be vulnerable for high-dimensional data due to the curse of dimensionality. To mitigate this issue, we propose to use a robust graph that is considerably less influenced by the curse of dimensionality. We also establish a theoretical foundation for graph-based methods utilizing this proposed robust graph and demonstrate its consistency under fixed alternatives for both low-dimensional and high-dimensional data.

北京阿比特科技有限公司