Knowledge graphs contain rich semantic relationships related to items and incorporating such semantic relationships into recommender systems helps to explore the latent connections of items, thus improving the accuracy of prediction and enhancing the explainability of recommendations. However, such explainability is not adapted to users' contexts, which can significantly influence their preferences. In this work, we propose CA-KGCN (Context-Aware Knowledge Graph Convolutional Network), an end-to-end framework that can model users' preferences adapted to their contexts and can incorporate rich semantic relationships in the knowledge graph related to items. This framework captures users' attention to different factors: contexts and features of items. More specifically, the framework can model users' preferences adapted to their contexts and provide explanations adapted to the given context. Experiments on three real-world datasets show the effectiveness of our framework: modeling users' preferences adapted to their contexts and explaining the recommendations generated.
Linear complementary pairs (LCPs) of codes have been studied since they were introduced in the context of discussing mitigation measures against possible hardware attacks to integrated circuits. Since the security parameters for LCPs of codes are defined from the (Hamming) distance and the dual distance of the codes in the pair, and the additional algebraic structure of skew constacyclic codes provides tools for studying the the dual and the distance of a code, we study the properties of LCPs of skew constacyclic codes. As a result, we give a characterization for those pairs, as well as multiple results that lead to constructing pairs with designed security parameters. We extend skew BCH codes to a constacyclic context and show that an LCP of codes can be immediately constructed from a skew BCH constacyclic code. Additionally, we describe a Hamming weight-preserving automorphism group in the set of skew constacyclic codes, which can be used for constructing LCPs of codes.
The impact of outliers and anomalies on model estimation and data processing is of paramount importance, as evidenced by the extensive body of research spanning various fields over several decades: thousands of research papers have been published on the subject. As a consequence, numerous reviews, surveys, and textbooks have sought to summarize the existing literature, encompassing a wide range of methods from both the statistical and data mining communities. While these endeavors to organize and summarize the research are invaluable, they face inherent challenges due to the pervasive nature of outliers and anomalies in all data-intensive applications, irrespective of the specific application field or scientific discipline. As a result, the resulting collection of papers remains voluminous and somewhat heterogeneous. To address the need for knowledge organization in this domain, this paper implements the first systematic meta-survey of general surveys and reviews on outlier and anomaly detection. Employing a classical systematic survey approach, the study collects nearly 500 papers using two specialized scientific search engines. From this comprehensive collection, a subset of 56 papers that claim to be general surveys on outlier detection is selected using a snowball search technique to enhance field coverage. A meticulous quality assessment phase further refines the selection to a subset of 25 high-quality general surveys. Using this curated collection, the paper investigates the evolution of the outlier detection field over a 20-year period, revealing emerging themes and methods. Furthermore, an analysis of the surveys sheds light on the survey writing practices adopted by scholars from different communities who have contributed to this field. Finally, the paper delves into several topics where consensus has emerged from the literature. These include taxonomies of outlier types, challenges posed by high-dimensional data, the importance of anomaly scores, the impact of learning conditions, difficulties in benchmarking, and the significance of neural networks. Non-consensual aspects are also discussed, particularly the distinction between local and global outliers and the challenges in organizing detection methods into meaningful taxonomies.
In survival analysis, complex machine learning algorithms have been increasingly used for predictive modeling. Given a collection of features available for inclusion in a predictive model, it may be of interest to quantify the relative importance of a subset of features for the prediction task at hand. In particular, in HIV vaccine trials, participant baseline characteristics are used to predict the probability of infection over the intended follow-up period, and investigators may wish to understand how much certain types of predictors, such as behavioral factors, contribute toward overall predictiveness. Time-to-event outcomes such as time to infection are often subject to right censoring, and existing methods for assessing variable importance are typically not intended to be used in this setting. We describe a broad class of algorithm-agnostic variable importance measures for prediction in the context of survival data. We propose a nonparametric efficient estimation procedure that incorporates flexible learning of nuisance parameters, yields asymptotically valid inference, and enjoys double-robustness. We assess the performance of our proposed procedure via numerical simulations and analyze data from the HVTN 702 study to inform enrollment strategies for future HIV vaccine trials.
This work introduces UstanceBR, a multimodal corpus in the Brazilian Portuguese Twitter domain for target-based stance prediction. The corpus comprises 86.8 k labelled stances towards selected target topics, and extensive network information about the users who published these stances on social media. In this article we describe the corpus multimodal data, and a number of usage examples in both in-domain and zero-shot stance prediction based on text- and network-related information, which are intended to provide initial baseline results for future studies in the field.
In several branches of the social sciences and humanities, surveys based on standardized questionnaires are a prominent research tool. While there are a variety of ways to analyze the data, some standard procedures have become established. When those surveys want to analyze differences in the answer patterns of different groups (e.g., countries, gender, age, ...), these procedures can only be carried out in a meaningful way if there is measurement invariance, i.e., the measured construct has psychometric equivalence across groups. As recently raised as an open problem by Sauerwein et al. (2021), new evaluation methods that work in the absence of measurement invariance are needed. This paper promotes an unsupervised learning-based approach to such research data by proposing a procedure that works in three phases: data preparation, clustering of questionnaires, and measuring similarity based on the obtained clustering and the properties of each group. We generate synthetic data in three data sets, which allows us to compare our approach with the PCA approach under measurement invariance and under violated measurement invariance. As a main result, we obtain that the approach provides a natural comparison between groups and a natural description of the response patterns of the groups. Moreover, it can be safely applied to a wide variety of data sets, even in the absence of measurement invariance. Finally, this approach allows us to translate (violations of) measurement invariance into a meaningful measure of similarity.
Singularly perturbed boundary value problems pose a significant challenge for their numerical approximations because of the presence of sharp boundary layers. These sharp boundary layers are responsible for the stiffness of solutions, which leads to large computational errors, if not properly handled. It is well-known that the classical numerical methods as well as the Physics-Informed Neural Networks (PINNs) require some special treatments near the boundary, e.g., using extensive mesh refinements or finer collocation points, in order to obtain an accurate approximate solution especially inside of the stiff boundary layer. In this article, we modify the PINNs and construct our new semi-analytic SL-PINNs suitable for singularly perturbed boundary value problems. Performing the boundary layer analysis, we first find the corrector functions describing the singular behavior of the stiff solutions inside boundary layers. Then we obtain the SL-PINN approximations of the singularly perturbed problems by embedding the explicit correctors in the structure of PINNs or by training the correctors together with the PINN approximations. Our numerical experiments confirm that our new SL-PINN methods produce stable and accurate approximations for stiff solutions.
Due to the dynamic characteristics of instantaneity and steepness, employing domain decomposition techniques for simulating rogue wave solutions is highly appropriate. Wherein, the backward compatible PINN (bc-PINN) is a temporally sequential scheme to solve PDEs over successive time segments while satisfying all previously obtained solutions. In this work, we propose improvements to the original bc-PINN algorithm in two aspects based on the characteristics of error propagation. One is to modify the loss term for ensuring backward compatibility by selecting the earliest learned solution for each sub-domain as pseudo reference solution. The other is to adopt the concatenation of solutions obtained from individual subnetworks as the final form of the predicted solution. The improved backward compatible PINN (Ibc-PINN) is applied to study data-driven higher-order rogue waves for the nonlinear Schr\"{o}dinger (NLS) equation and the AB system to demonstrate the effectiveness and advantages. Transfer learning and initial condition guided learning (ICGL) techniques are also utilized to accelerate the training. Moreover, the error analysis is conducted on each sub-domain and it turns out that the slowdown of Ibc-PINN in error accumulation speed can yield greater advantages in accuracy. In short, numerical results fully indicate that Ibc-PINN significantly outperforms bc-PINN in terms of accuracy and stability without sacrificing efficiency.
The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is important for the numerical solution of Poisson's equation and volume integral equations. In this paper, we present a simple and efficient high-order algorithm for computing the Newtonian potential over a planar domain discretized by an unstructured mesh. The algorithm is based on the use of Green's third identity for transforming the Newtonian potential into a collection of layer potentials over the boundaries of the mesh elements, which can be easily evaluated by the Helsing-Ojala method. One important component of our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in the monomial basis, for which we provide extensive justification. The performance of our algorithm is illustrated through several numerical experiments.
We present a new stability and error analysis of fully discrete approximation schemes for the transient Stokes equation. For the spatial discretization, we consider a wide class of Galerkin finite element methods which includes both inf-sup stable spaces and symmetric pressure stabilized formulations. We extend the results from Burman and Fern\'andez [\textit{SIAM J. Numer. Anal.}, 47 (2009), pp. 409-439] and provide a unified theoretical analysis of backward difference formulae (BDF methods) of order 1 to 6. The main novelty of our approach lies in the use of Dahlquist's G-stability concept together with multiplier techniques introduced by Nevannlina-Odeh and recently by Akrivis et al. [\textit{SIAM J. Numer. Anal.}, 59 (2021), pp. 2449-2472] to derive optimal stability and error estimates for both the velocity and the pressure. When combined with a method dependent Ritz projection for the initial data, unconditional stability can be shown while for arbitrary interpolation, pressure stability is subordinate to the fulfillment of a mild inverse CFL-type condition between space and time discretizations.
Many data symmetries can be described in terms of group equivariance and the most common way of encoding group equivariances in neural networks is by building linear layers that are group equivariant. In this work we investigate whether equivariance of a network implies that all layers are equivariant. On the theoretical side we find cases where equivariance implies layerwise equivariance, but also demonstrate that this is not the case generally. Nevertheless, we conjecture that CNNs that are trained to be equivariant will exhibit layerwise equivariance and explain how this conjecture is a weaker version of the recent permutation conjecture by Entezari et al. [2022]. We perform quantitative experiments with VGG-nets on CIFAR10 and qualitative experiments with ResNets on ImageNet to illustrate and support our theoretical findings. These experiments are not only of interest for understanding how group equivariance is encoded in ReLU-networks, but they also give a new perspective on Entezari et al.'s permutation conjecture as we find that it is typically easier to merge a network with a group-transformed version of itself than merging two different networks.