亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving (SSP) temporal discretizations, we show that the simple bound-preserving limiter in [Li H., Xie S., Zhang X., SIAM J. Numer. Anal., 56 (2018)]. can enforce the strict bounds of the vorticity, if the velocity field satisfies a discrete divergence free constraint. For reducing oscillations, a modified TVB limiter adapted from [Cockburn B., Shu CW., SIAM J. Numer. Anal., 31 (1994)] is constructed without affecting the bound-preserving property. This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.

相關內容

This work is concerned with solving high-dimensional Fokker-Planck equations with the novel perspective that solving the PDE can be reduced to independent instances of density estimation tasks based on the trajectories sampled from its associated particle dynamics. With this approach, one sidesteps error accumulation occurring from integrating the PDE dynamics on a parameterized function class. This approach significantly simplifies deployment, as one is free of the challenges of implementing loss terms based on the differential equation. In particular, we introduce a novel class of high-dimensional functions called the functional hierarchical tensor (FHT). The FHT ansatz leverages a hierarchical low-rank structure, offering the advantage of linearly scalable runtime and memory complexity relative to the dimension count. We introduce a sketching-based technique that performs density estimation over particles simulated from the particle dynamics associated with the equation, thereby obtaining a representation of the Fokker-Planck solution in terms of our ansatz. We apply the proposed approach successfully to three challenging time-dependent Ginzburg-Landau models with hundreds of variables.

In this work, an efficient and robust isogeometric three-dimensional solid-beam finite element is developed for large deformations and finite rotations with merely displacements as degrees of freedom. The finite strain theory and hyperelastic constitutive models are considered and B-Spline and NURBS are employed for the finite element discretization. Similar to finite elements based on Lagrange polynomials, also NURBS-based formulations are affected by the non-physical phenomena of locking, which constrains the field variables and negatively impacts the solution accuracy and deteriorates convergence behavior. To avoid this problem within the context of a Solid-Beam formulation, the Assumed Natural Strain (ANS) method is applied to alleviate membrane and transversal shear locking and the Enhanced Assumed Strain (EAS) method against Poisson thickness locking. Furthermore, the Mixed Integration Point (MIP) method is employed to make the formulation more efficient and robust. The proposed novel isogeometric solid-beam element is tested on several single-patch and multi-patch benchmark problems, and it is validated against classical solid finite elements and isoparametric solid-beam elements. The results show that the proposed formulation can alleviate the locking effects and significantly improve the performance of the isogeometric solid-beam element. With the developed element, efficient and accurate predictions of mechanical properties of lattice-based structured materials can be achieved. The proposed solid-beam element inherits both the merits of solid elements e.g. flexible boundary conditions and of the beam elements i.e. higher computational efficiency.

In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.

We establish an $L_1$-bound between the coefficients of the optimal causal filter applied to the data-generating process and its finite sample approximation. Here, we assume that the data-generating process is a second-order stationary time series with either short or long memory autocovariances. To derive the $L_1$-bound, we first provide an exact expression for the coefficients of the causal filter and their approximations in terms of the absolute convergent series of the multistep ahead infinite and finite predictor coefficients, respectively. Then, we prove a so-called uniform Baxter's inequality to obtain a bound for the difference between the infinite and finite multistep ahead predictor coefficients in both short and long memory time series. The $L_1$-approximation error bound for the causal filter coefficients can be used to evaluate the performance of the linear predictions of time series through the mean squared error criterion.

Normal modal logics extending the logic K4.3 of linear transitive frames are known to lack the Craig interpolation property, except some logics of bounded depth such as S5. We turn this `negative' fact into a research question and pursue a non-uniform approach to Craig interpolation by investigating the following interpolant existence problem: decide whether there exists a Craig interpolant between two given formulas in any fixed logic above K4.3. Using a bisimulation-based characterisation of interpolant existence for descriptive frames, we show that this problem is decidable and coNP-complete for all finitely axiomatisable normal modal logics containing K4.3. It is thus not harder than entailment in these logics, which is in sharp contrast to other recent non-uniform interpolation results. We also extend our approach to Priorean temporal logics (with both past and future modalities) over the standard time flows-the integers, rationals, reals, and finite strict linear orders-none of which is blessed with the Craig interpolation property.

Finite-dimensional truncations are routinely used to approximate partial differential equations (PDEs), either to obtain numerical solutions or to derive reduced-order models. The resulting discretized equations are known to violate certain physical properties of the system. In particular, first integrals of the PDE may not remain invariant after discretization. Here, we use the method of reduced-order nonlinear solutions (RONS) to ensure that the conserved quantities of the PDE survive its finite-dimensional truncation. In particular, we develop two methods: Galerkin RONS and finite volume RONS. Galerkin RONS ensures the conservation of first integrals in Galerkin-type truncations, whether used for direct numerical simulations or reduced-order modeling. Similarly, finite volume RONS conserves any number of first integrals of the system, including its total energy, after finite volume discretization. Both methods are applicable to general time-dependent PDEs and can be easily incorporated in existing Galerkin-type or finite volume code. We demonstrate the efficacy of our methods on two examples: direct numerical simulations of the shallow water equation and a reduced-order model of the nonlinear Schrodinger equation. As a byproduct, we also generalize RONS to phenomena described by a system of PDEs.

The one-to-one mapping of control inputs to actuator outputs results in elaborate routing architectures that limit how complex fluidic soft robot behaviours can currently become. Embodied intelligence can be used as a tool to counteract this phenomenon. Control functionality can be embedded directly into actuators by leveraging the characteristics of fluid flow phenomena. Whilst prior soft robotics work has focused exclusively on actuators operating in a state of transient/no flow (constant pressure), or pulsatile/alternating flow, our work begins to explore the possibilities granted by operating in the closed-loop flow recirculation regime. Here we introduce the concept of FlowBots: soft robots that utilise the characteristics of continuous fluid flow to enable the embodiment of complex control functionality directly into the structure of the robot. FlowBots have robust, integrated, no-moving-part control systems, and these architectures enable: monolithic additive manufacturing methods, rapid prototyping, greater sustainability, and an expansive range of applications. Based on three FlowBot examples: a bidirectional actuator, a gripper, and a quadruped swimmer - we demonstrate how the characteristics of flow recirculation contribute to simplifications in fluidic analogue control architectures. We conclude by outlining our design and rapid prototyping methodology to empower others in the field to explore this new, emerging design field, and design their own FlowBots.

We present fast simulation methods for the self-assembly of complex shapes in two dimensions. The shapes are modeled via a general boundary curve and interact via a standard volume term promoting overlap and an interpenetration penalty. To efficiently realize the Gibbs measure on the space of possible configurations we employ the hybrid Monte Carlo algorithm together with a careful use of signed distance functions for energy evaluation. Motivated by the self-assembly of identical coat proteins of the tobacco mosaic virus which assemble into a helical shell, we design a particular nonconvex 2D model shape and demonstrate its robust self-assembly into a unique final state. Our numerical experiments reveal two essential prerequisites for this self-assembly process: blocking and matching (i.e., local repulsion and attraction) of different parts of the boundary; and nonconvexity and handedness of the shape.

We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.

This paper considers the problem of robust iterative Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Iterative methods are known to improve smoothed estimates but are not guaranteed to converge, motivating the development of more robust versions of the algorithms. The aim of this article is to present Levenberg-Marquardt (LM) and line-search extensions of the classical iterated extended Kalman smoother (IEKS) as well as the iterated posterior linearisation smoother (IPLS). The IEKS has previously been shown to be equivalent to the Gauss-Newton (GN) method. We derive a similar GN interpretation for the IPLS. Furthermore, we show that an LM extension for both iterative methods can be achieved with a simple modification of the smoothing iterations, enabling algorithms with efficient implementations. Our numerical experiments show the importance of robust methods, in particular for the IEKS-based smoothers. The computationally expensive IPLS-based smoothers are naturally robust but can still benefit from further regularisation.

北京阿比特科技有限公司