亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Place recognition is the foundation for enabling autonomous systems to achieve independent decision-making and safe operations. It is also crucial in tasks such as loop closure detection and global localization within SLAM. Previous methods utilize mundane point cloud representations as input and deep learning-based LiDAR-based Place Recognition (LPR) approaches employing different point cloud image inputs with convolutional neural networks (CNNs) or transformer architectures. However, the recently proposed Mamba deep learning model, combined with state space models (SSMs), holds great potential for long sequence modeling. Therefore, we developed OverlapMamba, a novel network for place recognition, which represents input range views (RVs) as sequences. In a novel way, we employ a stochastic reconstruction approach to build shift state space models, compressing the visual representation. Evaluated on three different public datasets, our method effectively detects loop closures, showing robustness even when traversing previously visited locations from different directions. Relying on raw range view inputs, it outperforms typical LiDAR and multi-view combination methods in time complexity and speed, indicating strong place recognition capabilities and real-time efficiency.

相關內容

LLM-based agents have emerged as promising tools, which are crafted to fulfill complex tasks by iterative planning and action. However, these agents are susceptible to undesired planning hallucinations when lacking specific knowledge for expertise-intensive tasks. To address this, preliminary attempts are made to enhance planning reliability by incorporating external workflow-related knowledge. Despite the promise, such infused knowledge is mostly disorganized and diverse in formats, lacking rigorous formalization and comprehensive comparisons. Motivated by this, we formalize different formats of workflow knowledge and present FlowBench, the first benchmark for workflow-guided planning. FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats. To assess different LLMs on FlowBench, we design a multi-tiered evaluation framework. We evaluate the efficacy of workflow knowledge across multiple formats, and the results indicate that current LLM agents need considerable improvements for satisfactory planning. We hope that our challenging benchmark can pave the way for future agent planning research.

Semantic segmentation is an important computer vision task, particularly for scene understanding and navigation of autonomous vehicles and UAVs. Several variations of deep neural network architectures have been designed to tackle this task. However, due to their huge computational costs and their high memory consumption, these models are not meant to be deployed on resource-constrained systems. To address this limitation, we introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks (SNNs, a low-power alternative to classical neural networks) with event cameras whose output data can directly feed these neural network inputs. We have designed EvSegSNN, a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons in an objective to trade-off resource usage against performance. The experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU while reducing the number of parameters by a factor of $1.6$ and sparing a batch normalization stage.

Understanding the interdependence between autonomous and human-operated vehicles remains an ongoing challenge, with significant implications for the safety and feasibility of autonomous driving.This interdependence arises from inherent interactions among road users.Thus, it is crucial for Autonomous Vehicles (AVs) to understand and analyze the intentions of human-driven vehicles, and to display behavior comprehensible to other traffic participants.To this end, this paper presents GTP-UDRIVE, a unified game-theoretic trajectory planner and decision-maker considering a mixed-traffic environment. Our model considers the intentions of other vehicles in the decision-making process and provides the AV with a human-like trajectory, based on the clothoid interpolation technique.% This study investigates a solver based on Particle Swarm Optimization (PSO) that quickly converges to an optimal decision.Among highly interactive traffic scenarios, the intersection crossing is particularly challenging. Hence, we choose to demonstrate the feasibility and effectiveness of our method in real traffic conditions, using an experimental autonomous vehicle at an unsignalized intersection. Testing results reveal that our approach is suitable for 1) Making decisions and generating trajectories simultaneously. 2) Describing the vehicle's trajectory as a piecewise clothoid and enforcing geometric constraints. 3) Reducing search space dimensionality for the trajectory optimization problem.

Quadcopters have been studied for decades thanks to their maneuverability and capability of operating in a variety of circumstances. However, quadcopters suffer from dynamical nonlinearity, actuator saturation, as well as sensor noise that make it challenging and time consuming to obtain accurate dynamic models and achieve satisfactory control performance. Fortunately, deep reinforcement learning came and has shown significant potential in system modelling and control of autonomous multirotor aerial vehicles, with recent advancements in deployment, performance enhancement, and generalization. In this paper, an end-to-end deep reinforcement learning-based controller for quadcopters is proposed that is secure for real-world implementation, data-efficient, and free of human gain adjustments. First, a novel actor-critic-based architecture is designed to map the robot states directly to the motor outputs. Then, a quadcopter dynamics-based simulator was devised to facilitate the training of the controller policy. Finally, the trained policy is deployed on a real Crazyflie nano quadrotor platform, without any additional fine-tuning process. Experimental results show that the quadcopter exhibits satisfactory performance as it tracks a given complicated trajectory, which demonstrates the effectiveness and feasibility of the proposed method and signifies its capability in filling the simulation-to-reality gap.

Click-Through Rate (CTR) prediction holds a paramount position in recommender systems. The prevailing ID-based paradigm underperforms in cold-start scenarios due to the skewed distribution of feature frequency. Additionally, the utilization of a single modality fails to exploit the knowledge contained within textual features. Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs). They design hard prompts to structure raw features into text for each interaction and then apply PLMs for text processing. With external knowledge and reasoning capabilities, PLMs extract valuable information even in cases of sparse interactions. Nevertheless, compared to ID-based models, pure text modeling degrades the efficacy of collaborative filtering, as well as feature scalability and efficiency during both training and inference. To address these issues, we propose \textbf{C}ost-\textbf{E}fficient \textbf{L}anguage Model \textbf{A}lignment (\textbf{CELA}) for CTR prediction. CELA incorporates textual features and language models while preserving the collaborative filtering capabilities of ID-based models. This model-agnostic framework can be equipped with plug-and-play textual features, with item-level alignment enhancing the utilization of external information while maintaining training and inference efficiency. Through extensive offline experiments, CELA demonstrates superior performance compared to state-of-the-art methods. Furthermore, an online A/B test conducted on an industrial App recommender system showcases its practical effectiveness, solidifying the potential for real-world applications of CELA.

Modern approaches to autonomous driving rely heavily on learned components trained with large amounts of human driving data via imitation learning. However, these methods require large amounts of expensive data collection and even then face challenges with safely handling long-tail scenarios and compounding errors over time. At the same time, pure Reinforcement Learning (RL) methods can fail to learn performant policies in sparse, constrained, and challenging-to-define reward settings like driving. Both of these challenges make deploying purely cloned policies in safety critical applications like autonomous vehicles challenging. In this paper we propose Combining IMitation and Reinforcement Learning (CIMRL) approach - a framework that enables training driving policies in simulation through leveraging imitative motion priors and safety constraints. CIMRL does not require extensive reward specification and improves on the closed loop behavior of pure cloning methods. By combining RL and imitation, we demonstrate that our method achieves state-of-the-art results in closed loop simulation driving benchmarks.

Socratic questioning is an effective teaching strategy, encouraging critical thinking and problem-solving. The conversational capabilities of large language models (LLMs) show great potential for providing scalable, real-time student guidance. However, current LLMs often give away solutions directly, making them ineffective instructors. We tackle this issue in the code debugging domain with TreeInstruct, an Instructor agent guided by a novel state space-based planning algorithm. TreeInstruct asks probing questions to help students independently identify and resolve errors. It estimates a student's conceptual and syntactical knowledge to dynamically construct a question tree based on their responses and current knowledge state, effectively addressing both independent and dependent mistakes concurrently in a multi-turn interaction setting. In addition to using an existing single-bug debugging benchmark, we construct a more challenging multi-bug dataset of 150 coding problems, incorrect solutions, and bug fixes -- all carefully constructed and annotated by experts. Extensive evaluation shows TreeInstruct's state-of-the-art performance on both datasets, proving it to be a more effective instructor than baselines. Furthermore, a real-world case study with five students of varying skill levels further demonstrates TreeInstruct's ability to guide students to debug their code efficiently with minimal turns and highly Socratic questioning.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司