In molecular communication (MC), molecules are released from the transmitter to convey information. This paper considers a realistic molecule shift keying (MoSK) scenario with two species of molecule in two reservoirs, where the molecules are harvested from the environment and placed into different reservoirs, which are purified by exchanging molecules between the reservoirs. This process consumes energy, and for a reasonable energy cost, the reservoirs cannot be pure; thus, our MoSK transmitter is imperfect, releasing mixtures of both molecules for every symbol, resulting in inter-symbol interference (ISI). To mitigate ISI, the properties of the receiver are analyzed and a detection method based on the ratio of different molecules is proposed. Theoretical and simulation results are provided, showing that with the increase of energy cost, the system achieves better performance. The good performance of the proposed detection scheme is also demonstrated.
Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making, drawing upon their extensive world knowledge and proficiency in language-related tasks. LLMs thus hold tremendous potential for natural language interaction within multi-agent systems to foster cooperation. However, LLM agents tend to over-report and comply with any instruction, which may result in information redundancy and confusion in multi-agent cooperation. Inspired by human organizations, this paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems. Through a series of experiments with embodied LLM agents and human-agent collaboration, our results highlight the impact of designated leadership on team efficiency, shedding light on the leadership qualities displayed by LLM agents and their spontaneous cooperative behaviors. Further, we harness the potential of LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process, resulting in novel organization structures that reduce communication costs and enhance team efficiency.
Sliced optimal transport, which is basically a Radon transform followed by one-dimensional optimal transport, became popular in various applications due to its efficient computation. In this paper, we deal with sliced optimal transport on the sphere $\mathbb{S}^{d-1}$ and on the rotation group SO(3). We propose a parallel slicing procedure of the sphere which requires again only optimal transforms on the line. We analyze the properties of the corresponding parallelly sliced optimal transport, which provides in particular a rotationally invariant metric on the spherical probability measures. For SO(3), we introduce a new two-dimensional Radon transform and develop its singular value decomposition. Based on this, we propose a sliced optimal transport on SO(3). As Wasserstein distances were extensively used in barycenter computations, we derive algorithms to compute the barycenters with respect to our new sliced Wasserstein distances and provide synthetic numerical examples on the 2-sphere that demonstrate their behavior for both the free and fixed support setting of discrete spherical measures. In terms of computational speed, they outperform the existing methods for semicircular slicing as well as the regularized Wasserstein barycenters.
Social connections are a conduit through which individuals communicate, information propagates, and diseases spread. Identifying individuals that are more likely to adopt ideas or technologies and spread them to others is essential in order to develop effective information campaigns, fight epidemics, and to maximize the reach of limited resources. Consequently a lot of work has focused on identifying sets of influencers. Here we show that seeding information using these influence maximization methods, only benefits connected and central individuals, consistently leaving the most vulnerable behind. Our results highlights troublesome outcomes of influence maximization algorithms: they do not disseminate information in an equitable manner threatening to create an increasingly unequal society. To overcome this issue we devise a simple, multi-objective algorithm, which maximises both influence and information equity. Our work demonstrates how to find fairer influencer sets, highlighting that in our search for maximizing information, we do not need to compromise on information equality.
Participation incentives a well-known issue inhibiting randomized clinical trials (RCTs). We frame this issue as a non-standard exploration-exploitation tradeoff: an RCT would like to explore as uniformly as possible, whereas each patient prefers "exploitation", i.e., treatments that seem best. We incentivize participation by leveraging information asymmetry between the trial and the patients. We measure statistical performance via worst-case estimation error under adversarially generated outcomes, a standard objective for RCTs. We obtain a near-optimal solution in terms of this objective: an incentive-compatible mechanism with a particular guarantee, and a nearly matching impossibility result for any incentive-compatible mechanism. We consider three model variants: homogeneous patients (of the same "type" comprising preferences and medical histories), heterogeneous agents, and an extension with estimated type frequencies.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.