亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider sweeping domain decomposition preconditioners to solve the Helmholtz equation in the case of stripwise domain decomposition with or without overlaps. We unify their derivation and convergence studies by expressing them as Jacobi, Gauss-Seidel, and Symmetric Gauss-Seidel methods for different numbering of the unknowns. The proposed framework enables theoretical comparisons between the double sweep methods in [Nataf and Nier (1997), Vion and Geuzaine (2018)] and those in [Stolk (2013, 2017), Vion and Geuzaine (2014)]. Additionally, it facilitates the introduction of a new sweeping algorithm. We provide numerical test cases to assess the validity of the theoretical studies.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器(qi)、體系結構(gou)和綜(zong)合國際會議。 Publisher:ACM。 SIT:

Detecting complex patterns in large volumes of event logs has diverse applications in various domains, such as business processes and fraud detection. Existing systems like ELK are commonly used to tackle this challenge, but their performance deteriorates for large patterns, while they suffer from limitations in terms of expressiveness and explanatory capabilities for their responses. In this work, we propose a solution that integrates a Complex Event Processing (CEP) engine into a broader query processsor on top of a decoupled storage infrastructure containing inverted indices of log events. The results demonstrate that our system excels in scalability and robustness, particularly in handling complex queries. Notably, our proposed system delivers responses for large complex patterns within seconds, while ELK experiences timeouts after 10 minutes. It also significantly outperforms solutions relying on FlinkCEP and executing MATCH_RECOGNIZE SQL queries.

We consider nonlinear eigenvalue problems to compute all eigenvalues in a bounded region on the complex plane. Based on domain decomposition and contour integrals, two robust and scalable parallel multi-step methods are proposed. The first method 1) uses the spectral indicator method to find eigenvalues and 2) calls a linear eigensolver to compute the associated eigenvectors. The second method 1) divides the region into subregions and uses the spectral indicator method to decide candidate regions that contain eigenvalues, 2) computes eigenvalues in each candidate subregion using Beyn's method; and 3) verifies each eigenvalue by substituting it back to the system and computes the smallest eigenvalue. Each step of the two methods is carried out in parallel. Both methods are robust, accurate, and does not require prior knowledge of the number and distribution of the eigenvalues in the region. Examples are presented to show the performance of the two methods.

Neural networks (NNs) inspired by the forward-backward algorithm (FBA) are used as equalizers for bandlimited channels with a memoryless nonlinearity. The NN-equalizers are combined with successive interference cancellation (SIC) to approach the information rates of joint detection and decoding (JDD) with considerably less complexity than JDD and other existing equalizers. Simulations for short-haul optical fiber links with square-law detection illustrate the gains of NNs as compared to the complexity-limited FBA and Gibbs sampling.

Quantum low-density parity-check (QLDPC) codes are among the most promising candidates for future quantum error correction schemes. However, a limited number of short to moderate-length QLDPC codes have been designed and their decoding performance is sub-optimal with a quaternary belief propagation (BP) decoder due to unavoidable short cycles in their Tanner graphs. In this paper, we propose a novel joint code and decoder design for QLDPC codes. The constructed codes have a minimum distance of about the square root of the block length. In addition, it is, to the best of our knowledge, the first QLDPC code family where BP decoding is not impaired by short cycles of length 4. This is achieved by using an ensemble BP decoder mitigating the influence of assembled short cycles. We outline two code construction methods based on classical quasi-cyclic codes and finite geometry codes. Numerical results demonstrate outstanding decoding performance over depolarizing channels.

A common pipeline in functional data analysis is to first convert the discretely observed data to smooth functions, and then represent the functions by a finite-dimensional vector of coefficients summarizing the information. Existing methods for data smoothing and dimensional reduction mainly focus on learning the linear mappings from the data space to the representation space, however, learning only the linear representations may not be sufficient. In this study, we propose to learn the nonlinear representations of functional data using neural network autoencoders designed to process data in the form it is usually collected without the need of preprocessing. We design the encoder to employ a projection layer computing the weighted inner product of the functional data and functional weights over the observed timestamp, and the decoder to apply a recovery layer that maps the finite-dimensional vector extracted from the functional data back to functional space using a set of predetermined basis functions. The developed architecture can accommodate both regularly and irregularly spaced data. Our experiments demonstrate that the proposed method outperforms functional principal component analysis in terms of prediction and classification, and maintains superior smoothing ability and better computational efficiency in comparison to the conventional autoencoders under both linear and nonlinear settings.

The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue.

We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.

Recent constructions of quantum low-density parity-check (QLDPC) codes provide optimal scaling of the number of logical qubits and the minimum distance in terms of the code length, thereby opening the door to fault-tolerant quantum systems with minimal resource overhead. However, the hardware path from nearest-neighbor-connection-based topological codes to long-range-interaction-demanding QLDPC codes is a challenging one. Given the practical difficulty in building a monolithic architecture for quantum computers based on optimal QLDPC codes, it is worth considering a distributed implementation of such codes over a network of interconnected quantum processors. In such a setting, all syndrome measurements and logical operations must be performed using high-fidelity shared entangled states between the processing nodes. Since probabilistic many-to-1 distillation schemes for purifying entanglement are inefficient, we investigate quantum error correction based entanglement purification in this work. Specifically, we employ QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing (DQC), e.g. for fault-tolerant Steane syndrome extraction. This protocol is applicable beyond DQC since entanglement purification is a quintessential task of any quantum network. We use the min-sum algorithm (MSA) based iterative decoder for distilling $3$-qubit GHZ states using a rate $0.118$ family of lifted product QLDPC codes and obtain an input threshold of $\approx 0.7974$ under i.i.d. single-qubit depolarizing noise. This represents the best threshold for a yield of $0.118$ for any GHZ purification protocol. Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司