In this paper, we propose a general meshless structure-preserving Galerkin method for solving dissipative PDEs on surfaces. By posing the PDE in the variational formulation and simulating the solution in the finite-dimensional approximation space spanned by (local) Lagrange functions generated with positive definite kernels, we obtain a semi-discrete Galerkin equation that inherits the energy dissipation property. The fully-discrete structure-preserving scheme is derived with the average vector field method. We provide a convergence analysis of the proposed method for the Allen-Cahn equation. The numerical experiments also verify the theoretical analysis including the convergence order and structure-preserving properties.
In this paper, we design a new kind of high order inverse Lax-Wendroff (ILW) boundary treatment for solving hyperbolic conservation laws with finite difference method on a Cartesian mesh. This new ILW method decomposes the construction of ghost point values near inflow boundary into two steps: interpolation and extrapolation. At first, we impose values of some artificial auxiliary points through a polynomial interpolating the interior points near the boundary. Then, we will construct a Hermite extrapolation based on those auxiliary point values and the spatial derivatives at boundary obtained via the ILW procedure. This polynomial will give us the approximation to the ghost point value. By an appropriate selection of those artificial auxiliary points, high-order accuracy and stable results can be achieved. Moreover, theoretical analysis indicates that comparing with the original ILW method, especially for higher order accuracy, the new proposed one would require fewer terms using the relatively complicated ILW procedure and thus improve computational efficiency on the premise of maintaining accuracy and stability. We perform numerical experiments on several benchmarks, including one- and two-dimensional scalar equations and systems. The robustness and efficiency of the proposed scheme is numerically verified.
In this paper, we introduce a new simple approach to developing and establishing the convergence of splitting methods for a large class of stochastic differential equations (SDEs), including additive, diagonal and scalar noise types. The central idea is to view the splitting method as a replacement of the driving signal of an SDE, namely Brownian motion and time, with a piecewise linear path that yields a sequence of ODEs $-$ which can be discretized to produce a numerical scheme. This new way of understanding splitting methods is inspired by, but does not use, rough path theory. We show that when the driving piecewise linear path matches certain iterated stochastic integrals of Brownian motion, then a high order splitting method can be obtained. We propose a general proof methodology for establishing the strong convergence of these approximations that is akin to the general framework of Milstein and Tretyakov. That is, once local error estimates are obtained for the splitting method, then a global rate of convergence follows. This approach can then be readily applied in future research on SDE splitting methods. By incorporating recently developed approximations for iterated integrals of Brownian motion into these piecewise linear paths, we propose several high order splitting methods for SDEs satisfying a certain commutativity condition. In our experiments, which include the Cox-Ingersoll-Ross model and additive noise SDEs (noisy anharmonic oscillator, stochastic FitzHugh-Nagumo model, underdamped Langevin dynamics), the new splitting methods exhibit convergence rates of $O(h^{3/2})$ and outperform schemes previously proposed in the literature.
In this paper, we propose a Minimax Trust Region (MINIMAX-TR) algorithm and a Minimax Trust Region Algorithm with Contractions and Expansions(MINIMAX-TRACE) algorithm for solving nonconvex-strongly concave minimax problems. Both algorithms can find an $(\epsilon, \sqrt{\epsilon})$-second order stationary point(SSP) within $\mathcal{O}(\epsilon^{-1.5})$ iterations, which matches the best well known iteration complexity.
In this paper, we perform a study on the effectiveness of Neural Network (NN) techniques for deconvolution inverse problems. We consider NN's asymptotic limits, corresponding to Gaussian Processes (GPs), where parameter non-linearities are lost. Using these resulting GPs, we address the deconvolution inverse problem in the case of a quantum harmonic oscillator simulated through Monte Carlo techniques on a lattice. A scenario with a known analytical solution. Our findings indicate that solving the deconvolution inverse problem with a fully connected NN yields less performing results than those obtained using the GPs derived from NN's asymptotic limits. Furthermore, we observe the trained NN's accuracy approaching that of GPs with increasing layer width. Notably, one of these GPs defies interpretation as a probabilistic model, offering a novel perspective compared to established methods in the literature. Additionally, the NNs, in their asymptotic limit, provide cost-effective analytical solutions.
In this paper, we introduce a method for estimating blind spots for sensor setups of autonomous or automated vehicles and/or robotics applications. In comparison to previous methods that rely on geometric approximations, our presented approach provides more realistic coverage estimates by utilizing accurate and detailed 3D simulation environments. Our method leverages point clouds from LiDAR sensors or camera depth images from high-fidelity simulations of target scenarios to provide accurate and actionable visibility estimates. A Monte Carlo-based reference sensor simulation enables us to accurately estimate blind spot size as a metric of coverage, as well as detection probabilities of objects at arbitrary positions.
In this paper, we present a novel digital twin prototype for a learning-enabled self-driving vehicle. The primary objective of this digital twin is to perform traffic sign recognition and lane keeping. The digital twin architecture relies on co-simulation and uses the Functional Mock-up Interface and SystemC Transaction Level Modeling standards. The digital twin consists of four clients, i) a vehicle model that is designed in Amesim tool, ii) an environment model developed in Prescan, iii) a lane-keeping controller designed in Robot Operating System, and iv) a perception and speed control module developed in the formal modeling language of BIP (Behavior, Interaction, Priority). These clients interface with the digital twin platform, PAVE360-Veloce System Interconnect (PAVE360-VSI). PAVE360-VSI acts as the co-simulation orchestrator and is responsible for synchronization, interconnection, and data exchange through a server. The server establishes connections among the different clients and also ensures adherence to the Ethernet protocol. We conclude with illustrative digital twin simulations and recommendations for future work.
In this paper, we present new high-probability PAC-Bayes bounds for different types of losses. Firstly, for losses with a bounded range, we recover a strengthened version of Catoni's bound that holds uniformly for all parameter values. This leads to new fast rate and mixed rate bounds that are interpretable and tighter than previous bounds in the literature. In particular, the fast rate bound is equivalent to the Seeger--Langford bound. Secondly, for losses with more general tail behaviors, we introduce two new parameter-free bounds: a PAC-Bayes Chernoff analogue when the loss' cumulative generating function is bounded, and a bound when the loss' second moment is bounded. These two bounds are obtained using a new technique based on a discretization of the space of possible events for the "in probability" parameter optimization problem. This technique is both simpler and more general than previous approaches optimizing over a grid on the parameters' space. Finally, we extend all previous results to anytime-valid bounds using a simple technique applicable to any existing bound.
In this paper, we propose to consider various models of pattern recognition. At the same time, it is proposed to consider models in the form of two operators: a recognizing operator and a decision rule. Algebraic operations are introduced on recognizing operators, and based on the application of these operators, a family of recognizing algorithms is created. An upper estimate is constructed for the model, which guarantees the completeness of the extension.
In this paper, we analyze the discrete inf-sup condition and related error estimates for a modified Hilbert transformation as used in the space-time discretization of time-dependent partial differential equations. It turns out that the stability constant depends linearly on the finite element mesh parameter, but in most cases, we can show optimal convergence. We present a series of numerical experiments which illustrate the theoretical findings.
This paper develops efficient preconditioned iterative solvers for incompressible flow problems discretised by an enriched Taylor-Hood mixed approximation, in which the usual pressure space is augmented by a piecewise constant pressure to ensure local mass conservation. This enrichment process causes over-specification of the pressure when the pressure space is defined by the union of standard Taylor-Hood basis functions and piecewise constant pressure basis functions, which complicates the design and implementation of efficient solvers for the resulting linear systems. We first describe the impact of this choice of pressure space specification on the matrices involved. Next, we show how to recover effective solvers for Stokes problems, with preconditioners based on the singular pressure mass matrix, and for Oseen systems arising from linearised Navier-Stokes equations, by using a two-stage pressure convection-diffusion strategy. The codes used to generate the numerical results are available online.