亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive a thermodynamically consistent, non-isothermal, hydrodynamic model for incompressible binary fluids following the generalized Onsager principle and Boussinesq approximation. This model preserves not only the volume of each fluid phase but also the positive entropy production rate under thermodynamically consistent boundary conditions. Guided by the thermodynamical consistency of the model, a set of second order structure-preserving numerical algorithms are devised to solve the governing partial differential equations along with consistent boundary conditions in the model, which preserve the entropy production rate as well as the volume of each fluid phase at the discrete level. Several numerical simulations are carried out using an efficient adaptive time-stepping strategy based on one of the structure-preserving schemes to simulate the Rayleigh-B\'{e}nard convection in the binary fluid and interfacial dynamics between two immiscible fluids under competing effects of the temperature gradient, gravity, and interfacial forces. Roll cell patterns and thermally induced mixing of binary fluids are observed in a rectangular region with insulated lateral boundaries and vertical ones with imposed temperature difference. Long time simulations of interfacial dynamics are performed demonstrating robust results of new structure-preserving schemes.

相關內容

Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. In this work, we propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are partially separable models, which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent Regularization by Denoising (RED), which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and an optimization scheme with variable splitting and ADMM, and prove convergence of our objective to a value corresponding to a stationary point satisfying the first order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method TD-DIP.

The dynamics of neuron populations during diverse tasks often evolve on low-dimensional manifolds. However, it remains challenging to discern the contributions of geometry and dynamics for encoding relevant behavioural variables. Here, we introduce an unsupervised geometric deep learning framework for representing non-linear dynamical systems based on statistical distributions of local phase portrait features. Our method provides robust geometry-aware or geometry-agnostic representations for the unbiased comparison of dynamics based on measured trajectories. We demonstrate that our statistical representation can generalise across neural network instances to discriminate computational mechanisms, obtain interpretable embeddings of neural dynamics in a primate reaching task with geometric correspondence to hand kinematics, and develop a decoding algorithm with state-of-the-art accuracy. Our results highlight the importance of using the intrinsic manifold structure over temporal information to develop better decoding algorithms and assimilate data across experiments.

Driving simulators have been used in the automotive industry for many years because of their ability to perform tests in a safe, reproducible and controlled immersive virtual environment. The improved performance of the simulator and its ability to recreate in-vehicle experience for the user is established through motion cueing algorithms (MCA). Such algorithms have constantly been developed with model predictive control (MPC) acting as the main control technique. Currently, available MPC-based methods either compute the optimal controller online or derive an explicit control law offline. These approaches limit the applicability of the MCA for real-time applications due to online computational costs and/or offline memory storage issues. This research presents a solution to deal with issues of offline and online solving through a hybrid approach. For this, an explicit MPC is used to generate a look-up table to provide an initial guess as a warm-start for the implicit MPC-based MCA. From the simulations, it is observed that the presented hybrid approach is able to reduce online computation load by shifting it offline using the explicit controller. Further, the algorithm demonstrates a good tracking performance with a significant reduction of computation time in a complex driving scenario using an emulator environment of a driving simulator.

We consider transporting a heavy payload that is attached to multiple quadrotors. The current state-of-the-art controllers either do not avoid inter-robot collision at all, leading to crashes when tasked with carrying payloads that are small in size compared to the cable lengths, or use computational demanding nonlinear optimization. We propose an extension to an existing efficient geometric payload transport controller to effectively avoid such collisions by designing an optimized cable force allocation method, and thus retaining the original stability properties. Our approach introduces a cascade of carefully designed quadratic programs that can be solved efficiently on highly constrained embedded flight controllers. We demonstrate our method on challenging scenarios with up to three small quadrotors with various payloads and cable lengths, with our controller running in real-time directly on the robots.

Sensitivity analysis for the unconfoundedness assumption is a crucial component of observational studies. The marginal sensitivity model has become increasingly popular for this purpose due to its interpretability and mathematical properties. As the basis of $L^\infty$-sensitivity analysis, it assumes the logit difference between the observed and full data propensity scores is uniformly bounded. In this article, we introduce a new $L^2$-sensitivity analysis framework which is flexible, sharp and efficient. We allow the strength of unmeasured confounding to vary across units and only require it to be bounded marginally for partial identification. We derive analytical solutions to the optimization problems under our $L^2$-models, which can be used to obtain sharp bounds for the average treatment effect (ATE). We derive efficient influence functions and use them to develop efficient one-step estimators in both analyses. We show that multiplier bootstrap can be applied to construct simultaneous confidence bands for our ATE bounds. In a real-data study, we demonstrate that $L^2$-analysis relaxes the interpretation of $L^\infty$-analysis and provides a much more reliable calibration process using observed covariates. Finally, we provide an extension of our theoretical results to the conditional average treatment effect (CATE).

With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.

Recent advances in learning-based control leverage deep function approximators, such as neural networks, to model the evolution of controlled dynamical systems over time. However, the problem of learning a dynamics model and a stabilizing controller persists, since the synthesis of a stabilizing feedback law for known nonlinear systems is a difficult task, let alone for complex parametric representations that must be fit to data. To this end, we propose Control with Inherent Lyapunov Stability (CoILS), a method for jointly learning parametric representations of a nonlinear dynamics model and a stabilizing controller from data. To do this, our approach simultaneously learns a parametric Lyapunov function which intrinsically constrains the dynamics model to be stabilizable by the learned controller. In addition to the stabilizability of the learned dynamics guaranteed by our novel construction, we show that the learned controller stabilizes the true dynamics under certain assumptions on the fidelity of the learned dynamics. Finally, we demonstrate the efficacy of CoILS on a variety of simulated nonlinear dynamical systems.

We introduce two new lowest order methods, a mixed method, and a hybrid Discontinuous Galerkin (HDG) method, for the approximation of incompressible flows. Both methods use divergence-conforming linear Brezzi-Douglas-Marini space for approximating the velocity and the lowest order Raviart-Thomas space for approximating the vorticity. Our methods are based on the physically correct viscous stress tensor of the fluid, involving the symmetric gradient of velocity (rather than the gradient), provide exactly divergence-free discrete velocity solutions, and optimal error estimates that are also pressure robust. We explain how the methods are constructed using the minimal number of coupling degrees of freedom per facet. The stability analysis of both methods are based on a Korn-like inequality for vector finite elements with continuous normal component. Numerical examples illustrate the theoretical findings and offer comparisons of condition numbers between the two new methods.

We propose an adaptive coding approach to achieve linear-quadratic-Gaussian (LQG) control with near-minimum bitrate prefix-free feedback. Our approach combines a recent analysis of a quantizer design for minimum rate LQG control with work on universal lossless source coding for sources on countable alphabets. In the aforementioned quantizer design, it was established that the quantizer outputs are an asymptotically stationary, ergodic process. To enable LQG control with provably near-minimum bitrate, the quantizer outputs must be encoded into binary codewords efficiently. This is possible given knowledge of the probability distributions of the quantizer outputs, or of their limiting distribution. Obtaining such knowledge is challenging; the distributions do not readily admit closed form descriptions. This motivates the application of universal source coding. Our main theoretical contribution in this work is a proof that (after an invertible transformation), the quantizer outputs are random variables that fall within an exponential or power-law envelope class (depending on the plant dimension). Using ideas from universal coding on envelope classes, we develop a practical, zero-delay version of these algorithms that operates with fixed precision arithmetic. We evaluate the performance of this algorithm numerically, and demonstrate competitive results with respect to fundamental tradeoffs between bitrate and LQG control performance.

We present an algorithm for the exact computer-aided construction of the Voronoi cells of lattices with known symmetry group. Our algorithm scales better than linearly with the total number of faces and is applicable to dimensions beyond 12, which previous methods could not achieve. The new algorithm is applied to the Coxeter-Todd lattice $K_{12}$ as well as to a family of lattices obtained from laminating $K_{12}$. By optimizing this family, we obtain a new best 13-dimensional lattice quantizer (among the lattices with published exact quantizer constants).

北京阿比特科技有限公司