亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an algorithm for the exact computer-aided construction of the Voronoi cells of lattices with known symmetry group. Our algorithm scales better than linearly with the total number of faces and is applicable to dimensions beyond 12, which previous methods could not achieve. The new algorithm is applied to the Coxeter-Todd lattice $K_{12}$ as well as to a family of lattices obtained from laminating $K_{12}$. By optimizing this family, we obtain a new best 13-dimensional lattice quantizer (among the lattices with published exact quantizer constants).

相關內容

This paper presents theoretical and practical results for the bin packing problem with scenarios, a generalization of the classical bin packing problem which considers the presence of uncertain scenarios, of which only one is realized. For this problem, we propose an absolute approximation algorithm whose ratio is bounded by the square root of the number of scenarios times the approximation ratio for an algorithm for the vector bin packing problem. We also show how an asymptotic polynomial-time approximation scheme is derived when the number of scenarios is constant. As a practical study of the problem, we present a branch-and-price algorithm to solve an exponential model and a variable neighborhood search heuristic. To speed up the convergence of the exact algorithm, we also consider lower bounds based on dual feasible functions. Results of these algorithms show the competence of the branch-and-price in obtaining optimal solutions for about 59% of the instances considered, while the combined heuristic and branch-and-price optimally solved 62% of the instances considered.

Phylogenetic networks are a flexible model of evolution that can represent reticulate evolution and handle complex data. Tree-based networks, which are phylogenetic networks that have a spanning tree with the same root and leaf-set as the network itself, have been well studied. However, not all networks are tree-based. Francis-Semple-Steel (2018) thus introduced several indices to measure the deviation of rooted binary phylogenetic networks $N$ from being tree-based, such as the minimum number $\delta^\ast(N)$ of additional leaves needed to make $N$ tree-based, and the minimum difference $\eta^\ast(N)$ between the number of vertices of $N$ and the number of vertices of a subtree of $N$ that shares the root and leaf set with $N$. Hayamizu (2021) has established a canonical decomposition of almost-binary phylogenetic networks of $N$, called the maximal zig-zag trail decomposition, which has many implications including a linear time algorithm for computing $\delta^\ast(N)$. The Maximum Covering Subtree Problem (MCSP) is the problem of computing $\eta^\ast(N)$, and Davidov et al. (2022) showed that this can be solved in polynomial time (in cubic time when $N$ is binary) by an algorithm for the minimum cost flow problem. In this paper, under the assumption that $N$ is almost-binary (i.e. each internal vertex has in-degree and out-degree at most two), we show that $\delta^\ast(N)\leq \eta^\ast (N)$ holds, which is tight, and give a characterisation of such phylogenetic networks $N$ that satisfy $\delta^\ast(N)=\eta^\ast(N)$. Our approach uses the canonical decomposition of $N$ and focuses on how the maximal W-fences (i.e. the forbidden subgraphs of tree-based networks) are connected to maximal M-fences in the network $N$. Our results introduce a new class of phylogenetic networks for which MCSP can be solved in linear time, which can be seen as a generalisation of tree-based networks.

The moment-sum-of-squares (moment-SOS) hierarchy is one of the most celebrated and widely applied methods for approximating the minimum of an n-variate polynomial over a feasible region defined by polynomial (in)equalities. A key feature of the hierarchy is that, at a fixed level, it can be formulated as a semidefinite program of size polynomial in the number of variables n. Although this suggests that it may therefore be computed in polynomial time, this is not necessarily the case. Indeed, as O'Donnell (2017) and later Raghavendra & Weitz (2017) show, there exist examples where the sos-representations used in the hierarchy have exponential bit-complexity. We study the computational complexity of the moment-SOS hierarchy, complementing and expanding upon earlier work of Raghavendra & Weitz (2017). In particular, we establish algebraic and geometric conditions under which polynomial-time computation is guaranteed to be possible.

The following hypothesis was put forward by Goreinov, Tyrtyshnikov and Zamarashkin in \cite{GTZ1997}. For arbitrary real $n \times k$ matrix with orthonormal columns a sufficiently "good" $k \times k$ submatrix exists. "Good" in the sense of having a bounded spectral norm of its inverse. The hypothesis says that for arbitrary $k = 1, \ldots, n-1$ the sharp upper bound is $\sqrt{n}$. Supported by numerical experiments, the problem remains open for all non-trivial cases ($1 < k < n-1$). In this paper, we will give the proof for the simplest of them ($n = 4, \, k = 2$).

Let $A(n, d)$ denote the maximum size of a binary code of length $n$ and minimum Hamming distance $d$. Studying $A(n, d)$, including efforts to determine it as well to derive bounds on $A(n, d)$ for large $n$'s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on $A(n, d)$ in the large-minimum distance regime, in particular, when $d = n/2 - \Omega(\sqrt{n})$. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length $n= 2^m -1$, distance $d \geq n/2 - 2^{c-1}\sqrt{n}$, and size $n^{c+1/2}$, for any $m\geq 4$ and any integer $c$ with $0 \leq c \leq m/2 - 1$. These code parameters are slightly worse than those of the Delsarte--Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance $d$, in particular, when $d = n/2 - \Omega(n^{2/3})$. Furthermore, by leveraging a Fourier-analytic view of Delsarte's linear program, upper bounds on $A(n, n/2 - \rho\sqrt{n})$ with $\rho\in (0.5, 9.5)$ are obtained that scale polynomially in $n$. To the best of authors' knowledge, the upper bound due to Barg and Nogin \cite{barg2006spectral} is the only previously known upper bound that scale polynomially in $n$ in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.

The solution of computational fluid dynamics problems is one of the most computationally hard tasks, especially in the case of complex geometries and turbulent flow regimes. We propose to use Tensor Train (TT) methods, which possess logarithmic complexity in problem size and have great similarities with quantum algorithms in the structure of data representation. We develop the Tensor train Finite Element Method -- TetraFEM -- and the explicit numerical scheme for the solution of the incompressible Navier-Stokes equation via Tensor Trains. We test this approach on the simulation of liquids mixing in a T-shape mixer, which, to our knowledge, was done for the first time using tensor methods in such non-trivial geometries. As expected, we achieve exponential compression in memory of all FEM matrices and demonstrate an exponential speed-up compared to the conventional FEM implementation on dense meshes. In addition, we discuss the possibility of extending this method to a quantum computer to solve more complex problems. This paper is based on work we conducted for Evonik Industries AG.

This article develops a random effects quantile regression model for panel data that allows for increased distributional flexibility, multivariate heterogeneity, and time-invariant covariates in situations where mean regression may be unsuitable. Our approach is Bayesian and builds upon the generalized asymmetric Laplace distribution to decouple the modeling of skewness from the quantile parameter. We derive an efficient simulation-based estimation algorithm, demonstrate its properties and performance in targeted simulation studies, and employ it in the computation of marginal likelihoods to enable formal Bayesian model comparisons. The methodology is applied in a study of U.S. residential rental rates following the Global Financial Crisis. Our empirical results provide interesting insights on the interaction between rents and economic, demographic and policy variables, weigh in on key modeling features, and overwhelmingly support the additional flexibility at nearly all quantiles and across several sub-samples. The practical differences that arise as a result of allowing for flexible modeling can be nontrivial, especially for quantiles away from the median.

We study when the neural tangent kernel (NTK) approximation is valid for training a model with the square loss. In the lazy training setting of Chizat et al. 2019, we show that rescaling the model by a factor of $\alpha = O(T)$ suffices for the NTK approximation to be valid until training time $T$. Our bound is tight and improves on the previous bound of Chizat et al. 2019, which required a larger rescaling factor of $\alpha = O(T^2)$.

We introduce a novel approach for measuring the total curvature at every triangle of a discrete surface. This method takes advantage of the relationship between per triangle total curvature and the Dirichlet energy of the Gauss map. This new tool can be used on both triangle meshes and point clouds and has numerous applications. In this study, we demonstrate the effectiveness of our technique by using it for feature-aware mesh decimation, and show that it outperforms existing curvature-estimation methods from popular libraries such as Meshlab, Trimesh2, and Libigl. When estimating curvature on point clouds, our method outperforms popular libraries PCL and CGAL.

We study the approximation of integrals $\int_D f(\boldsymbol{x}^\top A) \mathrm{d} \mu(\boldsymbol{x})$, where $A$ is a matrix, by quasi-Monte Carlo (QMC) rules $N^{-1} \sum_{k=0}^{N-1} f(\boldsymbol{x}_k^\top A)$. We are interested in cases where the main cost arises from calculating the products $\boldsymbol{x}_k^\top A$. We design QMC rules for which the computation of $\boldsymbol{x}_k^\top A$, $k = 0, 1, \ldots, N-1$, can be done fast, and for which the error of the QMC rule is similar to the standard QMC error. We do not require that $A$ has any particular structure. For instance, this approach can be used when approximating the expected value of a function with a multivariate normal random variable with a given covariance matrix, or when approximating the expected value of the solution of a PDE with random coefficients. The speed-up of the computation time is sometimes better and sometimes worse than the fast QMC matrix-vector product from [Dick, Kuo, Le Gia, and Schwab, Fast QMC Matrix-Vector Multiplication, SIAM J. Sci. Comput. 37 (2015)]. As in that paper, our approach applies to (polynomial) lattice point sets, but also to digital nets (we are currently not aware of any approach which allows one to apply the fast method from the aforementioned paper of Dick, Kuo, Le Gia, and Schwab to digital nets). Our method does not use FFT, instead we use repeated values in the quadrature points to derive a reduction in the computation time. This arises from the reduced CBC construction of lattice rules and polynomial lattice rules. The reduced CBC construction has been shown to reduce the computation time for the CBC construction. Here we show that it can also be used to also reduce the computation time of the QMC rule.

北京阿比特科技有限公司