亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The following hypothesis was put forward by Goreinov, Tyrtyshnikov and Zamarashkin in \cite{GTZ1997}. For arbitrary real $n \times k$ matrix with orthonormal columns a sufficiently "good" $k \times k$ submatrix exists. "Good" in the sense of having a bounded spectral norm of its inverse. The hypothesis says that for arbitrary $k = 1, \ldots, n-1$ the sharp upper bound is $\sqrt{n}$. Supported by numerical experiments, the problem remains open for all non-trivial cases ($1 < k < n-1$). In this paper, we will give the proof for the simplest of them ($n = 4, \, k = 2$).

相關內容

Motivated by the planarization of 2-layered straight-line drawings, we consider the problem of modifying a graph such that the resulting graph has pathwidth at most 1. The problem Pathwidth-One Vertex Explosion (POVE) asks whether such a graph can be obtained using at most $k$ vertex explosions, where a vertex explosion replaces a vertex $v$ by deg$(v)$ degree-1 vertices, each incident to exactly one edge that was originally incident to $v$. For POVE, we give an FPT algorithm with running time $O(4^k \cdot m)$ and an $O(k^2)$ kernel, thereby improving over the $O(k^6)$-kernel by Ahmed et al. [GD 22] in a more general setting. Similarly, a vertex split replaces a vertex $v$ by two distinct vertices $v_1$ and $v_2$ and distributes the edges originally incident to $v$ arbitrarily to $v_1$ and $v_2$. Analogously to POVE, we define the problem variant Pathwidth-One Vertex Splitting (POVS) that uses the split operation instead of vertex explosions. Here we obtain a linear kernel and an algorithm with running time $O((6k+12)^k \cdot m)$. This answers an open question by Ahmed et al. [GD22]. Finally, we consider the problem $\Pi$ Vertex Splitting ($\Pi$-VS), which generalizes the problem POVS and asks whether a given graph can be turned into a graph of a specific graph class $\Pi$ using at most $k$ vertex splits. For graph classes $\Pi$ that can be tested in monadic second-order graph logic (MSO$_2$), we show that the problem $\Pi$-VS can be expressed as an MSO$_2$ formula, resulting in an FPT algorithm for $\Pi$-VS parameterized by $k$ if $\Pi$ additionally has bounded treewidth. We obtain the same result for the problem variant using vertex explosions.

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ sampled inputs $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from a random sample, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

Concerning the recent notion of circular chromatic number of signed graphs, for each given integer $k$ we introduce two signed bipartite graphs, each on $2k^2-k+1$ vertices, having shortest negative cycle of length $2k$, and the circular chromatic number 4. Each of the construction can be viewed as a bipartite analogue of the generalized Mycielski graphs on odd cycles, $M_{\ell}(C_{2k+1})$. In the course of proving our result, we also obtain a simple proof of the fact that $M_{\ell}(C_{2k+1})$ and some similar quadrangulations of the projective plane have circular chromatic number 4. These proofs have the advantage that they illuminate, in an elementary manner, the strong relation between algebraic topology and graph coloring problems.

\textit{Pursuit-evasion games} have been intensively studied for several decades due to their numerous applications in artificial intelligence, robot motion planning, database theory, distributed computing, and algorithmic theory. \textsc{Cops and Robber} (\CR) is one of the most well-known pursuit-evasion games played on graphs, where multiple \textit{cops} pursue a single \textit{robber}. The aim is to compute the \textit{cop number} of a graph, $k$, which is the minimum number of cops that ensures the \textit{capture} of the robber. From the viewpoint of parameterized complexity, \CR is W[2]-hard parameterized by $k$~[Fomin et al., TCS, 2010]. Thus, we study structural parameters of the input graph. We begin with the \textit{vertex cover number} ($\mathsf{vcn}$). First, we establish that $k \leq \frac{\mathsf{vcn}}{3}+1$. Second, we prove that \CR parameterized by $\mathsf{vcn}$ is \FPT by designing an exponential kernel. We complement this result by showing that it is unlikely for \CR parameterized by $\mathsf{vcn}$ to admit a polynomial compression. We extend our exponential kernels to the parameters \textit{cluster vertex deletion number} and \textit{deletion to stars number}, and design a linear vertex kernel for \textit{neighborhood diversity}. Additionally, we extend all of our results to several well-studied variations of \CR.

A graph $G$ is \emph{locally irregular} if no two of its adjacent vertices have the same degree. In [Fioravantes et al. Complexity of finding maximum locally irregular induced subgraph. {\it SWAT}, 2022], the authors introduced and studied the problem of finding a locally irregular induced subgraph of a given a graph $G$ of maximum order, or, equivalently, computing a subset $S$ of $V(G)$ of minimum order, whose deletion from $G$ results in a locally irregular graph; $S$ is denoted as an \emph{optimal vertex-irregulator of $G$}. In this work we provide an in-depth analysis of the parameterised complexity of computing an optimal vertex-irregulator of a given graph $G$. Moreover, we introduce and study a variation of this problem, where $S$ is a substet of the edges of $G$; in this case, $S$ is denoted as an \emph{optimal edge-irregulator of $G$}. In particular, we prove that computing an optimal vertex-irregulator of a graph $G$ is in FPT when parameterised by the vertex integrity, neighborhood diversity or cluster deletion number of $G$, while it is $W[1]$-hard when parameterised by the feedback vertex set number or the treedepth of $G$. In the case of computing an optimal edge-irregulator of a graph $G$, we prove that this problem is in FPT when parameterised by the vertex integrity of $G$, while it is NP-hard even if $G$ is a planar bipartite graph of maximum degree $4$, and $W[1]$-hard when parameterised by the size of the solution, the feedback vertex set or the treedepth of $G$. Our results paint a comprehensive picture of the tractability of both problems studied here, considering most of the standard graph-structural parameters.

Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an $st$-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source $s$ and a single sink $t$. Computing an $st$-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an $st$-orientation with at most $k$ transitive edges is more challenging and it was recently proven to be NP-hard already when $k=0$. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

In submodular $k$-partition, the input is a non-negative submodular function $f$ defined over a finite ground set $V$ (given by an evaluation oracle) along with a positive integer $k$ and the goal is to find a partition of the ground set $V$ into $k$ non-empty parts $V_1, V_2, ..., V_k$ in order to minimize $\sum_{i=1}^k f(V_i)$. Narayanan, Roy, and Patkar (Journal of Algorithms, 1996) designed an algorithm for submodular $k$-partition based on the principal partition sequence and showed that the approximation factor of their algorithm is $2$ for the special case of graph cut functions (subsequently rediscovered by Ravi and Sinha (Journal of Operational Research, 2008)). In this work, we study the approximation factor of their algorithm for three subfamilies of submodular functions -- monotone, symmetric, and posimodular, and show the following results: 1. The approximation factor of their algorithm for monotone submodular $k$-partition is $4/3$. This result improves on the $2$-factor achievable via other algorithms. Moreover, our upper bound of $4/3$ matches the recently shown lower bound under polynomial number of function evaluation queries (Santiago, IWOCA 2021). Our upper bound of $4/3$ is also the first improvement beyond $2$ for a certain graph partitioning problem that is a special case of monotone submodular $k$-partition. 2. The approximation factor of their algorithm for symmetric submodular $k$-partition is $2$. This result generalizes their approximation factor analysis beyond graph cut functions. 3. The approximation factor of their algorithm for posimodular submodular $k$-partition is $2$. We also construct an example to show that the approximation factor of their algorithm for arbitrary submodular functions is $\Omega(n/k)$.

Given a graph $G=(V,E)$, for a vertex set $S\subseteq V$, let $N(S)$ denote the set of vertices in $V$ that have a neighbor in $S$. Extending the concept of binding number of graphs by Woodall~(1973), for a vertex set $X \subseteq V$, we define the binding number of $X$, denoted by $\bind(X)$, as the maximum number $b$ such that for every $S \subseteq X$ where $N(S)\neq V(G)$ it holds that $|N(S)|\ge b {|S|}$. Given this definition, we prove that if a graph $V(G)$ contains a subset $X$ with $\bind(X)= 1/k$ where $k$ is an integer, then $G$ possesses a matching of size at least $|X|/(k+1)$. Using this statement, we derive tight bounds for the estimators of the matching size in planar graphs. These estimators are previously used in designing sublinear space algorithms for approximating the maching size in the data stream model of computation. In particular, we show that the number of locally superior vertices is a $3$ factor approximation of the matching size in planar graphs. The previous analysis by Jowhari (2023) proved a $3.5$ approximation factor. As another application, we show a simple variant of an estimator by Esfandiari \etal (2015) achieves $3$ factor approximation of the matching size in planar graphs. Namely, let $s$ be the number of edges with both endpoints having degree at most $2$ and let $h$ be the number of vertices with degree at least $3$. We prove that when the graph is planar, the size of matching is at least $(s+h)/3$. This result generalizes a known fact that every planar graph on $n$ vertices with minimum degree $3$ has a matching of size at least $n/3$.

In this paper, we consider a new approach for semi-discretization in time and spatial discretization of a class of semi-linear stochastic partial differential equations (SPDEs) with multiplicative noise. The drift term of the SPDEs is only assumed to satisfy a one-sided Lipschitz condition and the diffusion term is assumed to be globally Lipschitz continuous. Our new strategy for time discretization is based on the Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of nearly $1$ for the approximate solution. The proof is based on new H\"older continuity estimates of the SPDE solution and the nonlinear term. For the general polynomial-type drift term, there are difficulties in deriving even the stability of the numerical solutions. We propose an interpolation-based finite element method for spatial discretization to overcome the difficulties. Then we obtain $H^1$ stability, higher moment $H^1$ stability, $L^2$ stability, and higher moment $L^2$ stability results using numerical and stochastic techniques. The nearly optimal convergence orders in time and space are hence obtained by coupling all previous results. Numerical experiments are presented to implement the proposed numerical scheme and to validate the theoretical results.

Several physical problems modeled by second-order partial differential equations can be efficiently solved using mixed finite elements of the Raviart-Thomas family for N-simplexes, introduced in the seventies. In case Neumann conditions are prescribed on a curvilinear boundary, the normal component of the flux variable should preferably not take up values at nodes shifted to the boundary of the approximating polytope in the corresponding normal direction. This is because the method's accuracy downgrades, which was shown in \cite{FBRT}. In that work an order-preserving technique was studied, based on a parametric version of these elements with curved simplexes. In this paper an alternative with straight-edged triangles for two-dimensional problems is proposed. The key point of this method is a Petrov-Galerkin formulation of the mixed problem, in which the test-flux space is a little different from the shape-flux space. After carrying out a well-posedness and stability analysis, error estimates of optimal order are proven.

北京阿比特科技有限公司