The spectrum scarcity is one of the main challenges of future wireless technologies. When looking at vehicle-to-everything (V2X), this magnifies as spectrum sharing might impact on safety and traffic efficiency. It is therefore of increasing interest to focus on the coexistence of the main access layer V2X technologies in the same geographical region and in the same channels, with particular reference to today's main candidates IEEE 802.11p and sidelink LTE-V2X Mode 4. In this work, in addition to investigating the impact of the reciprocal interference, which is shown to heavily impact especially on the former and in congested channel conditions, a mitigation solution is extensively studied, which is based on the insertion of the IEEE 802.11p preamble at the beginning of the sidelink LTE-V2X transmission. The proposal, which is being discussed also within standardization bodies, requires no modifications to the IEEE 802.11p protocol stack and minor modifications to sidelink LTE-V2X. It is also directly applied to upcoming IEEE 802.11bd and extendable to sidelink 5G-V2X. The paper shows, through analysis and simulations in free-flow and dense scenarios, that the proposal allows a significant improvement of co-channel coexistence in lowly loaded channel conditions and that the improvement is granted also in congested cases when combined with additional countermeasures. Regarding the latter aspect, in particular, different approaches are compared, showing that acting on the congestion control mechanisms is a simple but effective solution.
In the coming years, quantum networks will allow quantum applications to thrive thanks to the new opportunities offered by end-to-end entanglement of qubits on remote hosts via quantum repeaters. On a geographical scale, this will lead to the dawn of the Quantum Internet. While a full-blown deployment is yet to come, the research community is already working on a variety of individual enabling technologies and solutions. In this paper, with the guidance of extensive simulations, we take a broader view and investigate the problems of Quality of Service (QoS) and provisioning in the context of quantum networks, which are very different from their counterparts in classical data networks due to some of their fundamental properties. Our work leads the way towards a new class of studies that will allow the research community to better understand the challenges of quantum networks and their potential commercial exploitation.
Since 2010, the output of a risk assessment tool that predicts how likely an individual is to commit severe violence against their partner has been integrated within the Basque country courtrooms. The EPV-R, the tool developed to assist police officers during the assessment of gender-based violence cases, was also incorporated to assist the decision-making of judges. With insufficient training, judges are exposed to an algorithmic output that influences the human decision of adopting measures in cases of gender-based violence. In this paper, we examine the risks, harms and limits of algorithmic governance within the context of gender-based violence. Through the lens of an Spanish judge exposed to this tool, we analyse how the EPV-R is impacting on the justice system. Moving beyond the risks of unfair and biased algorithmic outputs, we examine legal, social and technical pitfalls such as opaque implementation, efficiency's paradox and feedback loop, that could led to unintended consequences on women who suffer gender-based violence. Our interdisciplinary framework highlights the importance of understanding the impact and influence of risk assessment tools within judicial decision-making and increase awareness about its implementation in this context.
The Internet of Things (IoT) is one of the emerging technologies that has grabbed the attention of researchers from academia and industry. The idea behind Internet of things is the interconnection of internet enabled things or devices to each other and to humans, to achieve some common goals. In near future IoT is expected to be seamlessly integrated into our environment and human will be wholly solely dependent on this technology for comfort and easy life style. Any security compromise of the system will directly affect human life. Therefore security and privacy of this technology is foremost important issue to resolve. In this paper we present a thorough study of security problems in IoT and classify possible cyberattacks on each layer of IoT architecture. We also discuss challenges to traditional security solutions such as cryptographic solutions, authentication mechanisms and key management in IoT. Device authentication and access controls is an essential area of IoT security, which is not surveyed so far. We spent our efforts to bring the state of the art device authentication and access control techniques on a single paper.
The widespread dependency on open-source software makes it a fruitful target for malicious actors, as demonstrated by recurring attacks. The complexity of today's open-source supply chains results in a significant attack surface, giving attackers numerous opportunities to reach the goal of injecting malicious code into open-source artifacts that is then downloaded and executed by victims. This work proposes a general taxonomy for attacks on open-source supply chains, independent of specific programming languages or ecosystems, and covering all supply chain stages from code contributions to package distribution. Taking the form of an attack tree, it covers 107 unique vectors, linked to 94 real-world incidents, and mapped to 33 mitigating safeguards. User surveys conducted with 17 domain experts and 134 software developers positively validated the correctness, comprehensiveness and comprehensibility of the taxonomy, as well as its suitability for various use-cases. Survey participants also assessed the utility and costs of the identified safeguards, and whether they are used.
In the upcoming 6G era, existing terrestrial networks have evolved toward space-air-ground integrated networks (SAGIN), providing ultra-high data rates, seamless network coverage, and ubiquitous intelligence for communications of applications and services. However, conventional communications in SAGIN still face data confidentiality issues. Fortunately, the concept of Quantum Key Distribution (QKD) over SAGIN is able to provide information-theoretic security for secure communications in SAGIN with quantum cryptography. Therefore, in this paper, we propose the quantum-secured SAGIN which is feasible to achieve proven secure communications using quantum mechanics to protect data channels between space, air, and ground nodes. Moreover, we propose a universal QKD service provisioning framework to minimize the cost of QKD services under the uncertainty and dynamics of communications in quantum-secured SAGIN. In this framework, fiber-based QKD services are deployed in passive optical networks with the advantages of low loss and high stability. Moreover, the widely covered and flexible satellite- and UAV-based QKD services are provisioned as a supplement during the real-time data transmission phase. Finally, to examine the effectiveness of the proposed concept and framework, a case study of quantum-secured SAGIN in the Metaverse is conducted where uncertain and dynamic factors of the secure communications in Metaverse applications are effectively resolved in the proposed framework.
The security of quantum key distribution (QKD) is severely threatened by discrepancies between realistic devices and theoretical assumptions. Recently, a significant framework called the reference technique was proposed to provide security against arbitrary source flaws, including pulse correlations. Here, we propose an efficient four-phase twin-field QKD using laser pulses adopting the reference technique for security against all possible source imperfections. We present a characterization of source flaws and connect them to experimental data, together with a finite-key analysis. In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and demonstrate a secure key rate of 1.63 kbps with a 20 dB channel loss. Compared with previous QKD protocols with imperfect devices, our work considerably improves both the secure key rate and the transmission distance, and shows application potential in the practical deployment of secure QKD with device imperfections.
Active learning is a promising alternative to alleviate the issue of high annotation cost in the computer vision tasks by consciously selecting more informative samples to label. Active learning for object detection is more challenging and existing efforts on it are relatively rare. In this paper, we propose a novel hybrid approach to address this problem, where the instance-level uncertainty and diversity are jointly considered in a bottom-up manner. To balance the computational complexity, the proposed approach is designed as a two-stage procedure. At the first stage, an Entropy-based Non-Maximum Suppression (ENMS) is presented to estimate the uncertainty of every image, which performs NMS according to the entropy in the feature space to remove predictions with redundant information gains. At the second stage, a diverse prototype (DivProto) strategy is explored to ensure the diversity across images by progressively converting it into the intra-class and inter-class diversities of the entropy-based class-specific prototypes. Extensive experiments are conducted on MS COCO and Pascal VOC, and the proposed approach achieves state of the art results and significantly outperforms the other counterparts, highlighting its superiority.
Human-AI co-creativity involves both humans and AI collaborating on a shared creative product as partners. In a creative collaboration, interaction dynamics, such as turn-taking, contribution type, and communication, are the driving forces of the co-creative process. Therefore the interaction model is a critical and essential component for effective co-creative systems. There is relatively little research about interaction design in the co-creativity field, which is reflected in a lack of focus on interaction design in many existing co-creative systems. The primary focus of co-creativity research has been on the abilities of the AI. This paper focuses on the importance of interaction design in co-creative systems with the development of the Co-Creative Framework for Interaction design (COFI) that describes the broad scope of possibilities for interaction design in co-creative systems. Researchers can use COFI for modeling interaction in co-creative systems by exploring alternatives in this design space of interaction. COFI can also be beneficial while investigating and interpreting the interaction design of existing co-creative systems. We coded a dataset of existing 92 co-creative systems using COFI and analyzed the data to show how COFI provides a basis to categorize the interaction models of existing co-creative systems. We identify opportunities to shift the focus of interaction models in co-creativity to enable more communication between the user and AI leading to human-AI partnerships.
Common image-text joint understanding techniques presume that images and the associated text can universally be characterized by a single implicit model. However, co-occurring images and text can be related in qualitatively different ways, and explicitly modeling it could improve the performance of current joint understanding models. In this paper, we train a Cross-Modal Coherence Modelfor text-to-image retrieval task. Our analysis shows that models trained with image--text coherence relations can retrieve images originally paired with target text more often than coherence-agnostic models. We also show via human evaluation that images retrieved by the proposed coherence-aware model are preferred over a coherence-agnostic baseline by a huge margin. Our findings provide insights into the ways that different modalities communicate and the role of coherence relations in capturing commonsense inferences in text and imagery.
Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a "split computation" system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with light-weight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image decompression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only.