As an integral part of the decentralized finance (DeFi) ecosystem, decentralized exchanges (DEX) with automated market maker (AMM) protocols have gained massive traction with the recently revived interest in blockchain and distributed ledger technology (DLT) in general. Instead of matching the buy and sell sides, AMMs employ a peer-to-pool method and determine asset price algorithmically through a so-called conservation function. To facilitate the improvement and development of AMM-based DEX, we create the first systematization of knowledge in this area. We first establish a general AMM framework describing the economics and formalizing the system's state-space representation. We then employ our framework to systematically compare the top AMM protocols' mechanics, illustrating their conservation functions, as well as slippage and divergence loss functions. We further discuss security and privacy concerns, how they are enabled by AMM-based DEX's inherent properties, and explore mitigating solutions. Finally, we conduct a comprehensive literature review on related work covering both DeFi and conventional market microstructure.
Smart contracts have recently been adopted by many security protocols. However, existing studies lack satisfactory theoretical support on how contracts benefit security protocols. This paper aims to give a systematic analysis of smart contract (SC)-based security protocols to fulfill the gap of unclear arguments and statements. We firstly investigate \textit{state of the art studies} and establish a formalized model of smart contract protocols with well-defined syntax and assumptions. Then, we apply our formal framework to two concrete instructions to explore corresponding advantages and desirable properties. Through our analysis, we abstract three generic properties (\textit{non-repudiation, non-equivocation, and non-frameability}) and accordingly identify two patterns. (1) a smart contract can be as an autonomous subscriber to assist the trusted third party (TTP); (2) a smart contract can replace traditional TTP. To the best of our knowledge, this is the first study to provide in-depth discussions of SC-based security protocols from a strictly theoretical perspective.
The problem of Byzantine consensus has been key to designing secure distributed systems. However, it is particularly difficult, mainly due to the presence of Byzantine processes that act arbitrarily and the unknown message delays in general networks. Although it is well known that both safety and liveness are at risk as soon as $n/3$ Byzantine processes fail, very few works attempted to characterize precisely the faults that produce safety violations from the faults that produce termination violations. In this paper, we present a new lower bound on the solvability of the consensus problem by distinguishing deceitful faults violating safety and benign faults violating termination from the more general Byzantine faults, in what we call the Byzantine-deceitful-benign fault model. We show that one cannot solve consensus if $n\leq 3t+d+2q$ with $t$ Byzantine processes, $d$ deceitful processes, and $q$ benign processes. In addition, we show that this bound is tight by presenting the Basilic class of consensus protocols that solve consensus when $n > 3t+d+2q$. These protocols differ in the number of processes from which they wait to receive messages before progressing. Each of these protocols is thus better suited for some applications depending on the predominance of benign or deceitful faults. Finally, we study the fault tolerance of the Basilic class of consensus protocols in the context of blockchains that need to solve the weaker problem of eventual consensus. We demonstrate that Basilic solves this problem with only $n > 2t+d+q$, hence demonstrating how it can strengthen blockchain security.
Cryptocurrency has been extensively studied as a decentralized financial technology built on blockchain. However, there is a lack of understanding of user experience with cryptocurrency exchanges, the main means for novice users to interact with cryptocurrency. We conduct a qualitative study to provide a panoramic view of user experience and security perception of exchanges. All 15 Chinese participants mainly use centralized exchanges (CEX) instead of decentralized exchanges (DEX) to trade decentralized cryptocurrency, which is paradoxical. A closer examination reveals that CEXes provide better usability and charge lower transaction fee than DEXes. Country-specific security perceptions are observed. Though DEXes provide better anonymity and privacy protection, and are free of governmental regulation, these are not necessary features for many participants. Based on the findings, we propose design implications to make cryptocurrency trading more decentralized.
Embodied AI is a recent research area that aims at creating intelligent agents that can move and operate inside an environment. Existing approaches in this field demand the agents to act in completely new and unexplored scenes. However, this setting is far from realistic use cases that instead require executing multiple tasks in the same environment. Even if the environment changes over time, the agent could still count on its global knowledge about the scene while trying to adapt its internal representation to the current state of the environment. To make a step towards this setting, we propose Spot the Difference: a novel task for Embodied AI where the agent has access to an outdated map of the environment and needs to recover the correct layout in a fixed time budget. To this end, we collect a new dataset of occupancy maps starting from existing datasets of 3D spaces and generating a number of possible layouts for a single environment. This dataset can be employed in the popular Habitat simulator and is fully compliant with existing methods that employ reconstructed occupancy maps during navigation. Furthermore, we propose an exploration policy that can take advantage of previous knowledge of the environment and identify changes in the scene faster and more effectively than existing agents. Experimental results show that the proposed architecture outperforms existing state-of-the-art models for exploration on this new setting.
As machine learning algorithms become increasingly integrated in crucial decision-making scenarios, such as healthcare, recruitment, and risk assessment, there have been increasing concerns about the privacy and fairness of such systems. Federated learning has been viewed as a promising solution for collaboratively training of machine learning models among multiple parties while maintaining the privacy of their local data. However, federated learning also poses new challenges in mitigating the potential bias against certain populations (e.g., demographic groups), as this typically requires centralized access to the sensitive information (e.g., race, gender) of each data point. Motivated by the importance and challenges of group fairness in federated learning, in this work, we propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method, which aims to provide fair model performance across different sensitive groups (e.g., racial, gender groups) while maintaining high utility. This formulation can further provide more flexibility in the customized local debiasing strategies for each client. We build our FairFed algorithm around the secure aggregation protocol of federated learning. When running federated training on widely investigated fairness datasets, we demonstrate that our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution. We also investigate the performance of FairFed on naturally distributed real-life data collected from different geographical locations or departments within an organization.
Federated learning (FL) promotes predictive model training at the Internet of things (IoT) devices by evading data collection cost in terms of energy, time, and privacy. We model the learning gain achieved by an IoT device against its participation cost as its utility. Due to the device-heterogeneity, the local model learning cost and its quality, which can be time-varying, differs from device to device. We show that this variation results in utility unfairness because the same global model is shared among the devices. By default, the master is unaware of the local model computation and transmission costs of the devices, thus it is unable to address the utility unfairness problem. Also, a device may exploit this lack of knowledge at the master to intentionally reduce its expenditure and thereby enhance its utility. We propose to control the quality of the global model shared with the devices, in each round, based on their contribution and expenditure. This is achieved by employing differential privacy to curtail global model divulgence based on the learning contribution. In addition, we devise adaptive computation and transmission policies for each device to control its expenditure in order to mitigate utility unfairness. Our results show that the proposed scheme reduces the standard deviation of the energy cost of devices by 99% in comparison to the benchmark scheme, while the standard deviation of the training loss of devices varies around 0.103.
After the success of the Bitcoin blockchain, came several cryptocurrencies and blockchain solutions in the last decade. Nonetheless, Blockchain-based systems still suffer from low transaction rates and high transaction processing latencies, which hinder blockchains' scalability. An entire class of solutions, called Layer-1 scalability solutions, have attempted to incrementally improve such limitations by adding/modifying fundamental blockchain attributes. Recently, a completely different class of works, called Layer-2 protocols, have emerged to tackle the blockchain scalability issues using unconventional approaches. Layer-2 protocols improve transaction processing rates, periods, and fees by minimizing the use of underlying slow and costly blockchains. In fact, the main chain acts just as an instrument for trust establishment and dispute resolution among Layer-2 participants, where only a few transactions are dispatched to the main chain. Thus, Layer-2 blockchain protocols have the potential to transform the domain. However, rapid and discrete developments have resulted in diverse branches of Layer-2 protocols. In this work, we systematically create a broad taxonomy of such protocols and implementations. We discuss each Layer-2 protocol class in detail and also elucidate their respective approaches, salient features, requirements, etc. Moreover, we outline the issues related to these protocols along with a comparative discussion. Our thorough study will help further systematize the knowledge dispersed in the domain and help the readers to better understand the field of Layer-2 protocols.
In recent years, establishing secure visual communications has turned into one of the essential problems for security engineers and researchers. However, only limited novel solutions are provided for image encryption, and limiting the visual cryptography to only limited schemes can bring up negative consequences, especially with emerging quantum computational systems. This paper presents a novel algorithm for establishing secure private visual communication. The proposed method has a layered architecture with several cohesive components, and corresponded with an NP-hard problem, despite its symmetric structure. This two-step technique is not limited to gray-scale pictures, and furthermore, utilizing a lattice structure causes to proposed method has optimal resistance for the post-quantum era, and is relatively secure from the theoretical dimension.
Refractive freeform components are becoming increasingly relevant for generating controlled patterns of light, because of their capability to spatially-modulate optical signals with high efficiency and low background. However, the use of these devices is still limited by difficulties in manufacturing macroscopic elements with complex, 3-dimensional (3D) surface reliefs. Here, 3D-printed and stretchable magic windows generating light patterns by refraction are introduced. The shape and, consequently, the light texture achieved can be changed through controlled device strain. Cryptographic magic windows are demonstrated through exemplary light patterns, including micro-QR-codes, that are correctly projected and recognized upon strain gating while remaining cryptic for as-produced devices. The light pattern of micro-QR-codes can also be projected by two coupled magic windows, with one of them acting as the decryption key. Such novel, freeform elements with 3D shape and tailored functionalities is relevant for applications in illumination design, smart labels, anti-counterfeiting systems, and cryptographic communication.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.