亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial intelligence (AI) in healthcare, especially in medical imaging, faces challenges due to data scarcity and privacy concerns. Addressing these, we introduce Med-DDPM, a diffusion model designed for 3D semantic brain MRI synthesis. This model effectively tackles data scarcity and privacy issues by integrating semantic conditioning. This involves the channel-wise concatenation of a conditioning image to the model input, enabling control in image generation. Med-DDPM demonstrates superior stability and performance compared to existing 3D brain imaging synthesis methods. It generates diverse, anatomically coherent images with high visual fidelity. In terms of dice score accuracy in the tumor segmentation task, Med-DDPM achieves 0.6207, close to the 0.6531 accuracy of real images, and outperforms baseline models. Combined with real images, it further increases segmentation accuracy to 0.6675, showing the potential of our proposed method for data augmentation. This model represents the first use of a diffusion model in 3D semantic brain MRI synthesis, producing high-quality images. Its semantic conditioning feature also shows potential for image anonymization in biomedical imaging, addressing data and privacy issues. We provide the code and model weights for Med-DDPM on our GitHub repository (//github.com/mobaidoctor/med-ddpm/) to support reproducibility.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Weight · 正交 · 泛函 · 類別 ·
2024 年 6 月 1 日

Motivated by applications in personalized medicine and individualized policymaking, there is a growing interest in techniques for quantifying treatment effect heterogeneity in terms of the conditional average treatment effect (CATE). Some of the most prominent methods for CATE estimation developed in recent years are T-Learner, DR-Learner and R-Learner. The latter two were designed to improve on the former by being Neyman-orthogonal. However, the relations between them remain unclear, and likewise the literature remains vague on whether these learners converge to a useful quantity or (functional) estimand when the underlying optimization procedure is restricted to a class of functions that does not include the CATE. In this article, we provide insight into these questions by discussing DR-Learner and R-Learner as special cases of a general class of weighted Neyman-orthogonal learners for the CATE, for which we moreover derive oracle bounds. Our results shed light on how one may construct Neyman-orthogonal learners with desirable properties, on when DR-Learner may be preferred over R-Learner (and vice versa), and on novel learners that may sometimes be preferable to either of these. Theoretical findings are confirmed using results from simulation studies on synthetic data, as well as an application in critical care medicine.

Realistic conditional 3D scene synthesis significantly enhances and accelerates the creation of virtual environments, which can also provide extensive training data for computer vision and robotics research among other applications. Diffusion models have shown great performance in related applications, e.g., making precise arrangements of unordered sets. However, these models have not been fully explored in floor-conditioned scene synthesis problems. We present MiDiffusion, a novel mixed discrete-continuous diffusion model architecture, designed to synthesize plausible 3D indoor scenes from given room types, floor plans, and potentially pre-existing objects. We represent a scene layout by a 2D floor plan and a set of objects, each defined by its category, location, size, and orientation. Our approach uniquely implements structured corruption across the mixed discrete semantic and continuous geometric domains, resulting in a better conditioned problem for the reverse denoising step. We evaluate our approach on the 3D-FRONT dataset. Our experimental results demonstrate that MiDiffusion substantially outperforms state-of-the-art autoregressive and diffusion models in floor-conditioned 3D scene synthesis. In addition, our models can handle partial object constraints via a corruption-and-masking strategy without task specific training. We show MiDiffusion maintains clear advantages over existing approaches in scene completion and furniture arrangement experiments.

Complexity is a signature quality of interest in artificial life systems. Alongside other dimensions of assessment, it is common to quantify genome sites that contribute to fitness as a complexity measure. However, limitations to the sensitivity of fitness assays in models with implicit replication criteria involving rich biotic interactions introduce the possibility of difficult-to-detect ``cryptic'' adaptive sites, which contribute small fitness effects below the threshold of individual detectability or involve epistatic redundancies. Here, we propose three knockout-based assay procedures designed to quantify cryptic adaptive sites within digital genomes. We report initial tests of these methods on a simple genome model with explicitly configured site fitness effects. In these limited tests, estimation results reflect ground truth cryptic sequence complexities well. Presented work provides initial steps toward development of new methods and software tools that improve the resolution, rigor, and tractability of complexity analyses across alife systems, particularly those requiring expensive in situ assessments of organism fitness.

Federated Learning (FL) stands to gain significant advantages from collaboratively training capacity-heterogeneous models, enabling the utilization of private data and computing power from low-capacity devices. However, the focus on personalizing capacity-heterogeneous models based on client-specific data has been limited, resulting in suboptimal local model utility, particularly for low-capacity clients. The heterogeneity in both data and device capacity poses two key challenges for model personalization: 1) accurately retaining necessary knowledge embedded within reduced submodels for each client, and 2) effectively sharing knowledge through aggregating size-varying parameters. To this end, we introduce Pa3dFL, a novel framework designed to enhance local model performance by decoupling and selectively sharing knowledge among capacity-heterogeneous models. First, we decompose each layer of the model into general and personal parameters. Then, we maintain uniform sizes for the general parameters across clients and aggregate them through direct averaging. Subsequently, we employ a hyper-network to generate size-varying personal parameters for clients using learnable embeddings. Finally, we facilitate the implicit aggregation of personal parameters by aggregating client embeddings through a self-attention module. We conducted extensive experiments on three datasets to evaluate the effectiveness of Pa3dFL. Our findings indicate that Pa3dFL consistently outperforms baseline methods across various heterogeneity settings. Moreover, Pa3dFL demonstrates competitive communication and computation efficiency compared to baseline approaches, highlighting its practicality and adaptability in adverse system conditions.

In speech emotion recognition (SER), using predefined features without considering their practical importance may lead to high dimensional datasets, including redundant and irrelevant information. Consequently, high-dimensional learning often results in decreasing model accuracy while increasing computational complexity. Our work underlines the importance of carefully considering and analyzing features in order to build efficient SER systems. We present a new supervised SER method based on an efficient feature engineering approach. We pay particular attention to the explainability of results to evaluate feature relevance and refine feature sets. This is performed iteratively through feature evaluation loop, using Shapley values to boost feature selection and improve overall framework performance. Our approach allows thus to balance the benefits between model performance and transparency. The proposed method outperforms human-level performance (HLP) and state-of-the-art machine learning methods in emotion recognition on the TESS dataset.

Despite several works that succeed in generating synthetic data with differential privacy (DP) guarantees, they are inadequate for generating high-quality synthetic data when the input data has missing values. In this work, we formalize the problems of DP synthetic data with missing values and propose three effective adaptive strategies that significantly improve the utility of the synthetic data on four real-world datasets with different types and levels of missing data and privacy requirements. We also identify the relationship between privacy impact for the complete ground truth data and incomplete data for these DP synthetic data generation algorithms. We model the missing mechanisms as a sampling process to obtain tighter upper bounds for the privacy guarantees to the ground truth data. Overall, this study contributes to a better understanding of the challenges and opportunities for using private synthetic data generation algorithms in the presence of missing data.

Mobile health has emerged as a major success for tracking individual health status, due to the popularity and power of smartphones and wearable devices. This has also brought great challenges in handling heterogeneous, multi-resolution data which arise ubiquitously in mobile health due to irregular multivariate measurements collected from individuals. In this paper, we propose an individualized dynamic latent factor model for irregular multi-resolution time series data to interpolate unsampled measurements of time series with low resolution. One major advantage of the proposed method is the capability to integrate multiple irregular time series and multiple subjects by mapping the multi-resolution data to the latent space. In addition, the proposed individualized dynamic latent factor model is applicable to capturing heterogeneous longitudinal information through individualized dynamic latent factors. Our theory provides a bound on the integrated interpolation error and the convergence rate for B-spline approximation methods. Both the simulation studies and the application to smartwatch data demonstrate the superior performance of the proposed method compared to existing methods.

Large language models (LLMs) have attracted significant attention for potential applications in digital health, while their application in mental health is subject to ongoing debate. This systematic review aims to evaluate the usage of LLMs in mental health, focusing on their strengths and limitations in early screening, digital interventions, and clinical applications. Adhering to PRISMA guidelines, we searched PubMed, IEEE Xplore, Scopus, and the JMIR using keywords: 'mental health OR mental illness OR mental disorder OR psychiatry' AND 'large language models'. We included articles published between January 1, 2017, and December 31, 2023, excluding non-English articles. 30 articles were evaluated, which included research on mental illness and suicidal ideation detection through text (n=12), usage of LLMs for mental health conversational agents (CAs) (n=5), and other applications and evaluations of LLMs in mental health (n=13). LLMs exhibit substantial effectiveness in detecting mental health issues and providing accessible, de-stigmatized eHealth services. However, the current risks associated with the clinical use might surpass their benefits. The study identifies several significant issues: the lack of multilingual datasets annotated by experts, concerns about the accuracy and reliability of the content generated, challenges in interpretability due to the 'black box' nature of LLMs, and persistent ethical dilemmas. These include the lack of a clear ethical framework, concerns about data privacy, and the potential for over-reliance on LLMs by both therapists and patients, which could compromise traditional medical practice. Despite these issues, the rapid development of LLMs underscores their potential as new clinical aids, emphasizing the need for continued research and development in this area.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司