亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models such as ChatGPT and GPT-4 have recently achieved astonishing performance on a variety of natural language processing tasks. In this paper, we propose MANGO, a benchmark to evaluate their capabilities to perform text-based mapping and navigation. Our benchmark includes 53 mazes taken from a suite of textgames: each maze is paired with a walkthrough that visits every location but does not cover all possible paths. The task is question-answering: for each maze, a large language model reads the walkthrough and answers hundreds of mapping and navigation questions such as "How should you go to Attic from West of House?" and "Where are we if we go north and east from Cellar?". Although these questions are easy to humans, it turns out that even GPT-4, the best-to-date language model, performs poorly at answering them. Further, our experiments suggest that a strong mapping and navigation ability would benefit large language models in performing relevant downstream tasks, such as playing textgames. Our MANGO benchmark will facilitate future research on methods that improve the mapping and navigation capabilities of language models. We host our leaderboard, data, code, and evaluation program at //mango.ttic.edu and //github.com/oaklight/mango/.

相關內容

Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.

Compositional generalization is an important ability of language models and has many different manifestations. For data-to-text generation, previous research on this ability is limited to a single manifestation called Systematicity and lacks consideration of large language models (LLMs), which cannot fully cover practical application scenarios. In this work, we propose SPOR, a comprehensive and practical evaluation method for compositional generalization in data-to-text generation. SPOR includes four aspects of manifestations (Systematicity, Productivity, Order invariance, and Rule learnability) and allows high-quality evaluation without additional manual annotations based on existing datasets. We demonstrate SPOR on two different datasets and evaluate some existing language models including LLMs. We find that the models are deficient in various aspects of the evaluation and need further improvement. Our work shows the necessity for comprehensive research on different manifestations of compositional generalization in data-to-text generation and provides a framework for evaluation.

Large language models (LLMs) have achieved state-of-the-art performance in various language processing tasks, motivating their adoption in simultaneous translation. Current fine-tuning methods to adapt LLMs for simultaneous translation focus on prompting optimization strategies using either data augmentation or prompt structure modifications. However, these methods suffer from several issues, such as an unnecessarily expanded training set, computational inefficiency from dumping the KV cache, increased prompt sizes, or restriction to a single decision policy. To eliminate these issues, we propose a new paradigm in fine-tuning LLMs for simultaneous translation, called SimulMask. It utilizes a novel attention mask technique that models simultaneous translation during fine-tuning by masking attention connections under a desired decision policy. Applying the proposed SimulMask on a Falcon LLM for the IWSLT 2017 dataset, we have observed a significant translation quality improvement compared to state-of-the-art prompting optimization strategies on three language pairs when averaged across four different latency regimes while reducing the computational cost.

Large language models (LLMs) have exhibited a strong promise in automatically generating executable code from natural language descriptions, particularly with interactive features that allow users to engage in the code-generation process by instructing the LLM with iterative feedback. However, existing interaction paradigms often assume that users have expert knowledge to debug source code and are not optimized for non-professional programmers' use. This raises challenges in making interactive code generation more accessible for individuals with varying levels of programming expertise. To tackle these challenges, we present IntelliExplain, which offers a novel human-LLM interaction paradigm to enhance non-professional programmers' experience by enabling them to interact with source code via natural language explanations. Users interact with IntelliExplain by providing natural language corrective feedback on errors they identify from the explanations. Feedback is used by the system to revise the code, until the user is satisfied with explanations by the system of the code. Our user study demonstrates that users with IntelliExplain achieve a significantly higher success rate 11.6% and 25.3% better than with vanilla GPT-3.5, while also requiring 39.0% and 15.6% less time in Text-to-SQL and Python code generation tasks, respectively.

The rapid evolution of large language models (LLMs) has ushered in the need for comprehensive assessments of their performance across various dimensions. In this paper, we propose LFED, a Literary Fiction Evaluation Dataset, which aims to evaluate the capability of LLMs on the long fiction comprehension and reasoning. We collect 95 literary fictions that are either originally written in Chinese or translated into Chinese, covering a wide range of topics across several centuries. We define a question taxonomy with 8 question categories to guide the creation of 1,304 questions. Additionally, we conduct an in-depth analysis to ascertain how specific attributes of literary fictions (e.g., novel types, character numbers, the year of publication) impact LLM performance in evaluations. Through a series of experiments with various state-of-the-art LLMs, we demonstrate that these models face considerable challenges in effectively addressing questions related to literary fictions, with ChatGPT reaching only 57.08% under the zero-shot setting. The dataset will be publicly available at //github.com/tjunlp-lab/LFED.git

Recent statements about the impressive capabilities of large language models (LLMs) are usually supported by evaluating on open-access benchmarks. Considering the vast size and wide-ranging sources of LLMs' training data, it could explicitly or implicitly include test data, leading to LLMs being more susceptible to data contamination. However, due to the opacity of training data, the black-box access of models, and the rapid growth of synthetic training data, detecting and mitigating data contamination for LLMs faces significant challenges. In this paper, we propose CDD, which stands for Contamination Detection via output Distribution for LLMs. CDD necessitates only the sampled texts to detect data contamination, by identifying the peakedness of LLM's output distribution. To mitigate the impact of data contamination in evaluation, we also present TED: Trustworthy Evaluation via output Distribution, based on the correction of LLM's output distribution. To facilitate this study, we introduce two benchmarks, i.e., DetCon and ComiEval, for data contamination detection and contamination mitigation evaluation tasks. Extensive experimental results show that CDD achieves the average relative improvements of 21.8\%-30.2\% over other contamination detection approaches in terms of Accuracy, F1 Score, and AUC metrics, and can effectively detect contamination caused by the variants of test data. TED significantly mitigates performance improvements up to 66.9\% attributed to data contamination across 24 settings and 21 contamination degrees. In real-world applications, we reveal that ChatGPT exhibits a high potential to suffer from data contamination on HumanEval benchmark.

Large language models (LLMs), such as ChatGPT, have received substantial attention due to their capabilities for understanding and generating human language. While there has been a burgeoning trend in research focusing on the employment of LLMs in supporting different medical tasks (e.g., enhancing clinical diagnostics and providing medical education), a review of these efforts, particularly their development, practical applications, and outcomes in medicine, remains scarce. Therefore, this review aims to provide a detailed overview of the development and deployment of LLMs in medicine, including the challenges and opportunities they face. In terms of development, we provide a detailed introduction to the principles of existing medical LLMs, including their basic model structures, number of parameters, and sources and scales of data used for model development. It serves as a guide for practitioners in developing medical LLMs tailored to their specific needs. In terms of deployment, we offer a comparison of the performance of different LLMs across various medical tasks, and further compare them with state-of-the-art lightweight models, aiming to provide an understanding of the advantages and limitations of LLMs in medicine. Overall, in this review, we address the following questions: 1) What are the practices for developing medical LLMs 2) How to measure the medical task performance of LLMs in a medical setting? 3) How have medical LLMs been employed in real-world practice? 4) What challenges arise from the use of medical LLMs? and 5) How to more effectively develop and deploy medical LLMs? By answering these questions, this review aims to provide insights into the opportunities for LLMs in medicine and serve as a practical resource. We also maintain a regularly updated list of practical guides on medical LLMs at: //github.com/AI-in-Health/MedLLMsPracticalGuide.

Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions in the recent past. However, the choice of use-cases that incorporate RAG with LLMs have been either generic or extremely domain specific, thereby questioning the scalability and generalizability of RAG-LLM approaches. In this work, we propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user query routing, data retrieval and custom prompting for question answering capabilities from data tables that are highly varying and large in size. Our system is tuned to extract information from Enterprise-level data products and furnish real time responses under 10 seconds. One prompt manages user-to-data authentication followed by three prompts to route, fetch data and generate a customizable prompt natural language responses. Additionally, we propose a five metric scoring module that detects and reports hallucinations in the LLM responses. Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains. Extensions to the proposed extreme RAG architectures can enable heterogeneous source querying using LLMs.

Large language models (LLMs) have shown exceptional proficiency in natural language processing but often fall short of generating creative and original responses to open-ended questions. To enhance LLM creativity, our key insight is to emulate the human process of inducing collective creativity through engaging discussions with participants from diverse backgrounds and perspectives. To this end, we propose LLM Discussion, a three-phase discussion framework that facilitates vigorous and diverging idea exchanges and ensures convergence to creative answers. Moreover, we adopt a role-playing technique by assigning distinct roles to LLMs to combat the homogeneity of LLMs. We evaluate the efficacy of the proposed framework with the Alternative Uses Test, Similarities Test, Instances Test, and Scientific Creativity Test through both LLM evaluation and human study. Our proposed framework outperforms single-LLM approaches and existing multi-LLM frameworks across various creativity metrics.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

北京阿比特科技有限公司