亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Documentation burden is a major contributor to clinician burnout, which is rising nationally and is an urgent threat to our ability to care for patients. Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician burden by assisting with documentation. Although many hospitals are actively integrating such systems into electronic medical record systems, AI chatbots utility and impact on clinical decision-making have not been studied for this intended use. We are the first to examine the utility of large language models in assisting clinicians draft responses to patient questions. In our two-stage cross-sectional study, 6 oncologists responded to 100 realistic synthetic cancer patient scenarios and portal messages developed to reflect common medical situations, first manually, then with AI assistance. We find AI-assisted responses were longer, less readable, but provided acceptable drafts without edits 58% of time. AI assistance improved efficiency 77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses could severely harm. In 31% cases, physicians thought AI drafts were human-written. AI assistance led to more patient education recommendations, fewer clinical actions than manual responses. Results show promise for AI to improve clinician efficiency and patient care through assisting documentation, if used judiciously. Monitoring model outputs and human-AI interaction remains crucial for safe implementation.

相關內容

Background: Pain assessment in individuals with neurological conditions, especially those with limited self-report ability and altered facial expressions, presents challenges. Existing measures, relying on direct observation by caregivers, lack sensitivity and specificity. In cerebral palsy, pain is a common comorbidity and a reliable evaluation protocol is crucial. Thus, having an automatic system that recognizes facial expressions could be of enormous help when diagnosing pain in this type of patient. Objectives: 1) to build a dataset of facial pain expressions in individuals with cerebral palsy, and 2) to develop an automated facial recognition system based on deep learning for pain assessment addressed to this population. Methods: Ten neural networks were trained on three pain image databases, including the UNBC-McMaster Shoulder Pain Expression Archive Database, the Multimodal Intensity Pain Dataset, and the Delaware Pain Database. Additionally, a curated dataset (CPPAIN) was created, consisting of 109 preprocessed facial pain expression images from individuals with cerebral palsy, categorized by two physiotherapists using the Facial Action Coding System observational scale. Results: InceptionV3 exhibited promising performance on the CP-PAIN dataset, achieving an accuracy of 62.67% and an F1 score of 61.12%. Explainable artificial intelligence techniques revealed consistent essential features for pain identification across models. Conclusion: This study demonstrates the potential of deep learning models for robust pain detection in populations with neurological conditions and communication disabilities. The creation of a larger dataset specific to cerebral palsy would further enhance model accuracy, offering a valuable tool for discerning subtle and idiosyncratic pain expressions. The insights gained could extend to other complex neurological conditions.

We consider Maxwell eigenvalue problems on uncertain shapes with perfectly conducting TESLA cavities being the driving example. Due to the shape uncertainty, the resulting eigenvalues and eigenmodes are also uncertain and it is well known that the eigenvalues may exhibit crossings or bifurcations under perturbation. We discuss how the shape uncertainties can be modelled using the domain mapping approach and how the deformation mapping can be expressed as coefficients in Maxwell's equations. Using derivatives of these coefficients and derivatives of the eigenpairs, we follow a perturbation approach to compute approximations of mean and covariance of the eigenpairs. For small perturbations, these approximations are faster and more accurate than Monte Carlo or similar sampling-based strategies. Numerical experiments for a three-dimensional 9-cell TESLA cavity are presented.

Nosocomial infections have important consequences for patients and hospital staff: they worsen patient outcomes and their management stresses already overburdened health systems. Accurate judgements of whether an infection is nosocomial helps staff make appropriate choices to protect other patients within the hospital. Nosocomiality cannot be properly assessed without considering whether the infected patient came into contact with high risk potential infectors within the hospital. We developed a Bayesian model that integrates epidemiological, contact and pathogen genetic data to determine how likely an infection is to be nosocomial and the probability of given infection candidates being the source of the infection.

Over the last years, there has been a change of perspective concerning the management of information systems, since they are no longer isolated and need to communicate with others. However, from a semantic point of view, real communication is difficult to achieve due to the heterogeneity of the systems. We present a proposal which, considering information systems are represented by software agents, provides a framework that favours a semantic communication among them, overcoming the heterogeneity of their agent communication languages. The main components of the framework are a suite of ontologies -- conceptualizing communication acts -- that will be used for generating the communication conversion, and an Event Calculus interpretation of the communications, which will be used for formalizing the notion of a satisfactory conversion. Moreover, we present a motivating example in order to complete the explanation of the whole picture.

Our goal is to learn about the political interests and preferences of the Members of Parliament by mining their parliamentary activity, in order to develop a recommendation/filtering system that, given a stream of documents to be distributed among them, is able to decide which documents should receive each Member of Parliament. We propose to use positive unlabeled learning to tackle this problem, because we only have information about relevant documents (the own interventions of each Member of Parliament in the debates) but not about irrelevant documents, so that we cannot use standard binary classifiers trained with positive and negative examples. We have also developed a new algorithm of this type, which compares favourably with: a) the baseline approach assuming that all the interventions of other Members of Parliament are irrelevant, b) another well-known positive unlabeled learning method and c) an approach based on information retrieval methods that matches documents and legislators' representations. The experiments have been carried out with data from the regional Andalusian Parliament at Spain.

Multivariate spatio-temporal models are widely applicable, but specifying their structure is complicated and may inhibit wider use. We introduce the R package tinyVAST from two viewpoints: the software user and the statistician. From the user viewpoint, tinyVAST adapts a widely used formula interface to specify generalized additive models, and combines this with arguments to specify spatial and spatio-temporal interactions among variables. These interactions are specified using arrow notation (from structural equation models), or an extended arrow-and-lag notation that allows simultaneous, lagged, and recursive dependencies among variables over time. The user also specifies a spatial domain for areal (gridded), continuous (point-count), or stream-network data. From the statistician viewpoint, tinyVAST constructs sparse precision matrices representing multivariate spatio-temporal variation, and parameters are estimated by specifying a generalized linear mixed model (GLMM). This expressive interface encompasses vector autoregressive, empirical orthogonal functions, spatial factor analysis, and ARIMA models. To demonstrate, we fit to data from two survey platforms sampling corals, sponges, rockfishes, and flatfishes in the Gulf of Alaska and Aleutian Islands. We then compare eight alternative model structures using different assumptions about habitat drivers and survey detectability. Model selection suggests that towed-camera and bottom trawl gears have spatial variation in detectability but sample the same underlying density of flatfishes and rockfishes, and that rockfishes are positively associated with sponges while flatfishes are negatively associated with corals. We conclude that tinyVAST can be used to test complicated dependencies representing alternative structural assumptions for research and real-world policy evaluation.

The proximal gradient method is a generic technique introduced to tackle the non-smoothness in optimization problems, wherein the objective function is expressed as the sum of a differentiable convex part and a non-differentiable regularization term. Such problems with tensor format are of interest in many fields of applied mathematics such as image and video processing. Our goal in this paper is to address the solution of such problems with a more general form of the regularization term. An adapted iterative proximal gradient method is introduced for this purpose. Due to the slowness of the proposed algorithm, we use new tensor extrapolation methods to enhance its convergence. Numerical experiments on color image deblurring are conducted to illustrate the efficiency of our approach.

Continuous queries over data streams may suffer from blocking operations and/or unbound wait, which may delay answers until some relevant input arrives through the data stream. These delays may turn answers, when they arrive, obsolete to users who sometimes have to make decisions with no help whatsoever. Therefore, it can be useful to provide hypothetical answers - "given the current information, it is possible that X will become true at time t" - instead of no information at all. In this paper we present a semantics for queries and corresponding answers that covers such hypothetical answers, together with an online algorithm for updating the set of facts that are consistent with the currently available information.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司