Functional regression analysis is an established tool for many contemporary scientific applications. Regression problems involving large and complex data sets are ubiquitous, and feature selection is crucial for avoiding overfitting and achieving accurate predictions. We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse high dimensional function-on-function regression problem, and we show how to extend it to the scalar-on-function framework. Our method, called FAStEN, combines functional data, optimization, and machine learning techniques to perform feature selection and parameter estimation simultaneously. We exploit the properties of Functional Principal Components and the sparsity inherent to the Dual Augmented Lagrangian problem to significantly reduce computational cost, and we introduce an adaptive scheme to improve selection accuracy. In addition, we derive asymptotic oracle properties, which guarantee estimation and selection consistency for the proposed FAStEN estimator. Through an extensive simulation study, we benchmark our approach to the best existing competitors and demonstrate a massive gain in terms of CPU time and selection performance, without sacrificing the quality of the coefficients' estimation. The theoretical derivations and the simulation study provide a strong motivation for our approach. Finally, we present an application to brain fMRI data from the AOMIC PIOP1 study.
Insurers usually turn to generalized linear models for modelling claim frequency and severity data. Due to their success in other fields, machine learning techniques are gaining popularity within the actuarial toolbox. Our paper contributes to the literature on frequency-severity insurance pricing with machine learning via deep learning structures. We present a benchmark study on four insurance data sets with frequency and severity targets in the presence of multiple types of input features. We compare in detail the performance of: a generalized linear model on binned input data, a gradient-boosted tree model, a feed-forward neural network (FFNN), and the combined actuarial neural network (CANN). Our CANNs combine a baseline prediction established with a GLM and GBM, respectively, with a neural network correction. We explain the data preprocessing steps with specific focus on the multiple types of input features typically present in tabular insurance data sets, such as postal codes, numeric and categorical covariates. Autoencoders are used to embed the categorical variables into the neural network and we explore their potential advantages in a frequency-severity setting. Finally, we construct global surrogate models for the neural nets' frequency and severity models. These surrogates enable the translation of the essential insights captured by the FFNNs or CANNs to GLMs. As such, a technical tariff table results that can easily be deployed in practice.
Heteroskedasticity testing in nonparametric regression is a classic statistical problem with important practical applications, yet fundamental limits are unknown. Adopting a minimax perspective, this article considers the testing problem in the context of an $\alpha$-H\"{o}lder mean and a $\beta$-H\"{o}lder variance function. For $\alpha > 0$ and $\beta \in (0, \frac{1}{2})$, the sharp minimax separation rate $n^{-4\alpha} + n^{-\frac{4\beta}{4\beta+1}} + n^{-2\beta}$ is established. To achieve the minimax separation rate, a kernel-based statistic using first-order squared differences is developed. Notably, the statistic estimates a proxy rather than a natural quadratic functional (the squared distance between the variance function and its best $L^2$ approximation by a constant) suggested in previous work. The setting where no smoothness is assumed on the variance function is also studied; the variance profile across the design points can be arbitrary. Despite the lack of structure, consistent testing turns out to still be possible by using the Gaussian character of the noise, and the minimax rate is shown to be $n^{-4\alpha} + n^{-1/2}$. Exploiting noise information happens to be a fundamental necessity as consistent testing is impossible if nothing more than zero mean and unit variance is known about the noise distribution. Furthermore, in the setting where $V$ is $\beta$-H\"{o}lder but heteroskedasticity is measured only with respect to the design points, the minimax separation rate is shown to be $n^{-4\alpha} + n^{-\left(\frac{1}{2} \vee \frac{4\beta}{4\beta+1}\right)}$ when the noise is Gaussian and $n^{-4\alpha} + n^{-\frac{4\beta}{4\beta+1}} + n^{-2\beta}$ when the noise distribution is unknown.
The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.
The proliferation of data generation has spurred advancements in functional data analysis. With the ability to analyze multiple variables simultaneously, the demand for working with multivariate functional data has increased. This study proposes a novel formulation of the epigraph and hypograph indexes, as well as their generalized expressions, specifically tailored for the multivariate functional context. These definitions take into account the interrelations between components. Furthermore, the proposed indexes are employed to cluster multivariate functional data. In the clustering process, the indexes are applied to both the data and their first and second derivatives. This generates a reduced-dimension dataset from the original multivariate functional data, enabling the application of well-established multivariate clustering techniques which have been extensively studied in the literature. This methodology has been tested through simulated and real datasets, performing comparative analyses against state-of-the-art to assess its performance.
Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of Inverse Problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in Inverse Problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions we derive a family of tests with prescribed level $\alpha$ and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.
The Graded of Membership (GoM) model is a powerful tool for inferring latent classes in categorical data, which enables subjects to belong to multiple latent classes. However, its application is limited to categorical data with nonnegative integer responses, making it inappropriate for datasets with continuous or negative responses. To address this limitation, this paper proposes a novel model named the Weighted Grade of Membership (WGoM) model. Compared with GoM, our WGoM relaxes GoM's distribution constraint on the generation of a response matrix and it is more general than GoM. We then propose an algorithm to estimate the latent mixed memberships and the other WGoM parameters. We derive the error bounds of the estimated parameters and show that the algorithm is statistically consistent. The algorithmic performance is validated in both synthetic and real-world datasets. The results demonstrate that our algorithm is accurate and efficient, indicating its high potential for practical applications. This paper makes a valuable contribution to the literature by introducing a novel model that extends the applicability of the GoM model and provides a more flexible framework for analyzing categorical data with weighted responses.
Over the last decade, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples $m$. Our work focuses on providing theoretical approximation guarantees for the class of $(\boldsymbol{b},\varepsilon)$-holomorphic functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of $m$-widths, Gelfand widths and Kolmogorov widths. We study two cases, known and unknown anisotropy, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.
Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.