亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Heteroskedasticity testing in nonparametric regression is a classic statistical problem with important practical applications, yet fundamental limits are unknown. Adopting a minimax perspective, this article considers the testing problem in the context of an $\alpha$-H\"{o}lder mean and a $\beta$-H\"{o}lder variance function. For $\alpha > 0$ and $\beta \in (0, \frac{1}{2})$, the sharp minimax separation rate $n^{-4\alpha} + n^{-\frac{4\beta}{4\beta+1}} + n^{-2\beta}$ is established. To achieve the minimax separation rate, a kernel-based statistic using first-order squared differences is developed. Notably, the statistic estimates a proxy rather than a natural quadratic functional (the squared distance between the variance function and its best $L^2$ approximation by a constant) suggested in previous work. The setting where no smoothness is assumed on the variance function is also studied; the variance profile across the design points can be arbitrary. Despite the lack of structure, consistent testing turns out to still be possible by using the Gaussian character of the noise, and the minimax rate is shown to be $n^{-4\alpha} + n^{-1/2}$. Exploiting noise information happens to be a fundamental necessity as consistent testing is impossible if nothing more than zero mean and unit variance is known about the noise distribution. Furthermore, in the setting where $V$ is $\beta$-H\"{o}lder but heteroskedasticity is measured only with respect to the design points, the minimax separation rate is shown to be $n^{-4\alpha} + n^{-\left(\frac{1}{2} \vee \frac{4\beta}{4\beta+1}\right)}$ when the noise is Gaussian and $n^{-4\alpha} + n^{-\frac{4\beta}{4\beta+1}} + n^{-2\beta}$ when the noise distribution is unknown.

相關內容

Prediction models are popular in medical research and practice. By predicting an outcome of interest for specific patients, these models may help inform difficult treatment decisions, and are often hailed as the poster children for personalized, data-driven healthcare. We show however, that using prediction models for decision making can lead to harmful decisions, even when the predictions exhibit good discrimination after deployment. These models are harmful self-fulfilling prophecies: their deployment harms a group of patients but the worse outcome of these patients does not invalidate the predictive power of the model. Our main result is a formal characterization of a set of such prediction models. Next we show that models that are well calibrated before and after deployment are useless for decision making as they made no change in the data distribution. These results point to the need to revise standard practices for validation, deployment and evaluation of prediction models that are used in medical decisions.

The prediction accuracy of machine learning methods is steadily increasing, but the calibration of their uncertainty predictions poses a significant challenge. Numerous works focus on obtaining well-calibrated predictive models, but less is known about reliably assessing model calibration. This limits our ability to know when algorithms for improving calibration have a real effect, and when their improvements are merely artifacts due to random noise in finite datasets. In this work, we consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem. The null hypothesis is that the predictive model is calibrated, while the alternative hypothesis is that the deviation from calibration is sufficiently large. We find that detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions. When the conditional class probabilities are H\"older continuous, we propose T-Cal, a minimax optimal test for calibration based on a debiased plug-in estimator of the $\ell_2$-Expected Calibration Error (ECE). We further propose Adaptive T-Cal, a version that is adaptive to unknown smoothness. We verify our theoretical findings with a broad range of experiments, including with several popular deep neural net architectures and several standard post-hoc calibration methods. T-Cal is a practical general-purpose tool, which -- combined with classical tests for discrete-valued predictors -- can be used to test the calibration of virtually any probabilistic classification method.

This paper explores an iterative coupling approach to solve linear thermo-poroelasticity problems, with its application as a high-fidelity discretization utilizing finite elements during the training of projection-based reduced order models. One of the main challenges in addressing coupled multi-physics problems is the complexity and computational expenses involved. In this study, we introduce a decoupled iterative solution approach, integrated with reduced order modeling, aimed at augmenting the efficiency of the computational algorithm. The iterative coupling technique we employ builds upon the established fixed-stress splitting scheme that has been extensively investigated for Biot's poroelasticity. By leveraging solutions derived from this coupled iterative scheme, the reduced order model employs an additional Galerkin projection onto a reduced basis space formed by a small number of modes obtained through proper orthogonal decomposition. The effectiveness of the proposed algorithm is demonstrated through numerical experiments, showcasing its computational prowess.

Robust inferential methods based on divergences measures have shown an appealing trade-off between efficiency and robustness in many different statistical models. In this paper, minimum density power divergence estimators (MDPDEs) for the scale and shape parameters of the log-logistic distribution are considered. The log-logistic is a versatile distribution modeling lifetime data which is commonly adopted in survival analysis and reliability engineering studies when the hazard rate is initially increasing but then it decreases after some point. Further, it is shown that the classical estimators based on maximum likelihood (MLE) are included as a particular case of the MDPDE family. Moreover, the corresponding influence function of the MDPDE is obtained, and its boundlessness is proved, thus leading to robust estimators. A simulation study is carried out to illustrate the slight loss in efficiency of MDPDE with respect to MLE and, at besides, the considerable gain in robustness.

Reinforcement learning-based large language models, such as ChatGPT, are believed to have potential to aid human experts in many domains, including healthcare. There is, however, little work on ChatGPT's ability to perform a key task in healthcare: formal, probabilistic medical diagnostic reasoning. This type of reasoning is used, for example, to update a pre-test probability to a post-test probability. In this work, we probe ChatGPT's ability to perform this task. In particular, we ask ChatGPT to give examples of how to use Bayes rule for medical diagnosis. Our prompts range from queries that use terminology from pure probability (e.g., requests for a "posterior probability") to queries that use terminology from the medical diagnosis literature (e.g., requests for a "post-test probability"). We show how the introduction of medical variable names leads to an increase in the number of errors that ChatGPT makes. Given our results, we also show how one can use prompt engineering to facilitate ChatGPT's partial avoidance of these errors. We discuss our results in light of recent commentaries on sensitivity and specificity. We also discuss how our results might inform new research directions for large language models.

Efficiently creating a concise but comprehensive data set for training machine-learned interatomic potentials (MLIPs) is an under-explored problem. Active learning (AL), which uses either biased or unbiased molecular dynamics (MD) simulations to generate candidate pools, aims to address this objective. Existing biased and unbiased MD simulations, however, are prone to miss either rare events or extrapolative regions -- areas of the configurational space where unreliable predictions are made. Simultaneously exploring both regions is necessary for developing uniformly accurate MLIPs. In this work, we demonstrate that MD simulations, when biased by the MLIP's energy uncertainty, effectively capture extrapolative regions and rare events without the need to know \textit{a priori} the system's transition temperatures and pressures. Exploiting automatic differentiation, we enhance bias-forces-driven MD simulations by introducing the concept of bias stress. We also employ calibrated ensemble-free uncertainties derived from sketched gradient features to yield MLIPs with similar or better accuracy than ensemble-based uncertainty methods at a lower computational cost. We use the proposed uncertainty-driven AL approach to develop MLIPs for two benchmark systems: alanine dipeptide and MIL-53(Al). Compared to MLIPs trained with conventional MD simulations, MLIPs trained with the proposed data-generation method more accurately represent the relevant configurational space for both atomic systems.

Partial least squares (PLS) is a dimensionality reduction technique introduced in the field of chemometrics and successfully employed in many other areas. The PLS components are obtained by maximizing the covariance between linear combinations of the regressors and of the target variables. In this work, we focus on its application to scalar regression problems. PLS regression consists in finding the least squares predictor that is a linear combination of a subset of the PLS components. Alternatively, PLS regression can be formulated as a least squares problem restricted to a Krylov subspace. This equivalent formulation is employed to analyze the distance between ${\hat{\boldsymbol\beta}\;}_{\mathrm{PLS}}^{\scriptscriptstyle {(L)}}$, the PLS estimator of the vector of coefficients of the linear regression model based on $L$ PLS components, and $\hat{\boldsymbol \beta}_{\mathrm{OLS}}$, the one obtained by ordinary least squares (OLS), as a function of $L$. Specifically, ${\hat{\boldsymbol\beta}\;}_{\mathrm{PLS}}^{\scriptscriptstyle {(L)}}$ is the vector of coefficients in the aforementioned Krylov subspace that is closest to $\hat{\boldsymbol \beta}_{\mathrm{OLS}}$ in terms of the Mahalanobis distance with respect to the covariance matrix of the OLS estimate. We provide a bound on this distance that depends only on the distribution of the eigenvalues of the regressor covariance matrix. Numerical examples on synthetic and real-world data are used to illustrate how the distance between ${\hat{\boldsymbol\beta}\;}_{\mathrm{PLS}}^{\scriptscriptstyle {(L)}}$ and $\hat{\boldsymbol \beta}_{\mathrm{OLS}}$ depends on the number of clusters in which the eigenvalues of the regressor covariance matrix are grouped.

Agricultural robotics and automation are facing some challenges rooted in the high variability 9 of products, task complexity, crop quality requirement, and dense vegetation. Such a set of 10 challenges demands a more versatile and safe robotic system. Soft robotics is a young yet 11 promising field of research aimed to enhance these aspects of current rigid robots which 12 makes it a good candidate solution for that challenge. In general, it aimed to provide robots 13 and machines with adaptive locomotion (Ansari et al., 2015), safe and adaptive manipulation 14 (Arleo et al., 2020) and versatile grasping (Langowski et al., 2020). But in agriculture, soft 15 robots have been mainly used in harvesting tasks and more specifically in grasping. In this 16 chapter, we review a candidate group of soft grippers that were used for handling and 17 harvesting crops regarding agricultural challenges i.e. safety in handling and adaptability to 18 the high variation of crops. The review is aimed to show why and to what extent soft grippers 19 have been successful in handling agricultural tasks. The analysis carried out on the results 20 provides future directions for the systematic design of soft robots in agricultural tasks.

We study the statistical capacity of the classical binary perceptrons with general thresholds $\kappa$. After recognizing the connection between the capacity and the bilinearly indexed (bli) random processes, we utilize a recent progress in studying such processes to characterize the capacity. In particular, we rely on \emph{fully lifted} random duality theory (fl RDT) established in \cite{Stojnicflrdt23} to create a general framework for studying the perceptrons' capacities. Successful underlying numerical evaluations are required for the framework (and ultimately the entire fl RDT machinery) to become fully practically operational. We present results obtained in that directions and uncover that the capacity characterizations are achieved on the second (first non-trivial) level of \emph{stationarized} full lifting. The obtained results \emph{exactly} match the replica symmetry breaking predictions obtained through statistical physics replica methods in \cite{KraMez89}. Most notably, for the famous zero-threshold scenario, $\kappa=0$, we uncover the well known $\alpha\approx0.8330786$ scaled capacity.

This research aims to take advantage of artificial intelligence techniques in producing students assessment that is compatible with the different academic accreditations of the same program. The possibility of using generative artificial intelligence technology was studied to produce an academic accreditation compliant test the National Center for Academic Accreditation of Kingdom of Saudi Arabia and Accreditation Board for Engineering and Technology. A novel method was introduced to map the verbs used to create the questions introduced in the tests. The method allows a possibility of using the generative artificial intelligence technology to produce and check the validity of questions that measure educational outcomes. A questionnaire was distributed to ensure that the use of generative artificial intelligence to create exam questions is acceptable by the faculty members, as well as to ask about the acceptance of assistance in validating questions submitted by faculty members and amending them in accordance with academic accreditations. The questionnaire was distributed to faculty members of different majors in the Kingdom of Saudi Arabias universities. one hundred twenty responses obtained with eight five percentile approval percentage for generate complete exam questions by generative artificial intelligence . Whereas ninety eight percentage was the approval percentage for editing and improving already existed questions.

北京阿比特科技有限公司