Partial least squares (PLS) is a dimensionality reduction technique introduced in the field of chemometrics and successfully employed in many other areas. The PLS components are obtained by maximizing the covariance between linear combinations of the regressors and of the target variables. In this work, we focus on its application to scalar regression problems. PLS regression consists in finding the least squares predictor that is a linear combination of a subset of the PLS components. Alternatively, PLS regression can be formulated as a least squares problem restricted to a Krylov subspace. This equivalent formulation is employed to analyze the distance between ${\hat{\boldsymbol\beta}\;}_{\mathrm{PLS}}^{\scriptscriptstyle {(L)}}$, the PLS estimator of the vector of coefficients of the linear regression model based on $L$ PLS components, and $\hat{\boldsymbol \beta}_{\mathrm{OLS}}$, the one obtained by ordinary least squares (OLS), as a function of $L$. Specifically, ${\hat{\boldsymbol\beta}\;}_{\mathrm{PLS}}^{\scriptscriptstyle {(L)}}$ is the vector of coefficients in the aforementioned Krylov subspace that is closest to $\hat{\boldsymbol \beta}_{\mathrm{OLS}}$ in terms of the Mahalanobis distance with respect to the covariance matrix of the OLS estimate. We provide a bound on this distance that depends only on the distribution of the eigenvalues of the regressor covariance matrix. Numerical examples on synthetic and real-world data are used to illustrate how the distance between ${\hat{\boldsymbol\beta}\;}_{\mathrm{PLS}}^{\scriptscriptstyle {(L)}}$ and $\hat{\boldsymbol \beta}_{\mathrm{OLS}}$ depends on the number of clusters in which the eigenvalues of the regressor covariance matrix are grouped.
Forman-Ricci curvature (FRC) is a potent and powerful tool for analysing empirical networks, as the distribution of the curvature values can identify structural information that is not readily detected by other geometrical methods. Crucially, FRC captures higher-order structural information of clique complexes of a graph or Vietoris-Rips complexes, which is not readily accessible to alternative methods. However, existing FRC platforms are prohibitively computationally expensive. Therefore, herein we develop an efficient set-theoretic formulation for computing such high-order FRC in complex networks. Significantly, our set theory representation reveals previous computational bottlenecks and also accelerates the computation of FRC. Finally, We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. We envisage that FastForman will be used in Topological and Geometrical Data analysis for high-dimensional complex data sets.
Serial, or sequential, fusion of multiple biometric matchers has been not thoroughly investigated so far. However, this approach exhibits some advantages with respect to the widely adopted parallel approaches. In this paper, we propose a novel theoretical framework for the assessment of performance of such systems, based on a previous work of the authors. Benefits in terms of performance are theoretically evaluated, as well as estimation errors in the model parameters computation. Model is analyzed from the viewpoint of its pros and cons, by mean of preliminary experiments performed on NIST Biometric Score Set 1.
The celebrated Kleene fixed point theorem is crucial in the mathematical modelling of recursive specifications in Denotational Semantics. In this paper we discuss whether the hypothesis of the aforementioned result can be weakened. An affirmative answer to the aforesaid inquiry is provided so that a characterization of those properties that a self-mapping must satisfy in order to guarantee that its set of fixed points is non-empty when no notion of completeness are assumed to be satisfied by the partially ordered set. Moreover, the case in which the partially ordered set is coming from a quasi-metric space is treated in depth. Finally, an application of the exposed theory is obtained. Concretely, a mathematical method to discuss the asymptotic complexity of those algorithms whose running time of computing fulfills a recurrence equation is presented. Moreover, the aforesaid method retrieves the fixed point based methods that appear in the literature for asymptotic complexity analysis of algorithms. However, our new method improves the aforesaid methods because it imposes fewer requirements than those that have been assumed in the literature and, in addition, it allows to state simultaneously upper and lower asymptotic bounds for the running time computing.
Although Regge finite element functions are not continuous, useful generalizations of nonlinear derivatives like the curvature, can be defined using them. This paper is devoted to studying the convergence of the finite element lifting of a generalized (distributional) Gauss curvature defined using a metric tensor in the Regge finite element space. Specifically, we investigate the interplay between the polynomial degree of the curvature lifting by Lagrange elements and the degree of the metric tensor in the Regge finite element space. Previously, a superconvergence result, where convergence rate of one order higher than expected, was obtained when the metric is the canonical Regge interpolant of the exact metric. In this work, we show that an even higher order can be obtained if the degree of the curvature lifting is reduced by one polynomial degre and if at least linear Regge elements are used. These improved convergence rates are confirmed by numerical examples.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.
Recently, a family of unconventional integrators for ODEs with polynomial vector fields was proposed, based on the polarization of vector fields. The simplest instance is the by now famous Kahan discretization for quadratic vector fields. All these integrators seem to possess remarkable conservation properties. In particular, it has been proved that, when the underlying ODE is Hamiltonian, its polarization discretization possesses an integral of motion and an invariant volume form. In this note, we propose a new algebraic approach to derivation of the integrals of motion for polarization discretizations.
It is well known that for singular inconsistent range-symmetric linear systems, the generalized minimal residual (GMRES) method determines a least squares solution without breakdown. The reached least squares solution may be or not be the pseudoinverse solution. We show that a lift strategy can be used to obtain the pseudoinverse solution. In addition, we propose a new iterative method named RSMAR (minimum $\mathbf A$-residual) for range-symmetric linear systems $\mathbf A\mathbf x=\mathbf b$. At step $k$ RSMAR minimizes $\|\mathbf A\mathbf r_k\|$ in the $k$th Krylov subspace generated with $\{\mathbf A, \mathbf r_0\}$ rather than $\|\mathbf r_k\|$, where $\mathbf r_k$ is the $k$th residual vector and $\|\cdot\|$ denotes the Euclidean vector norm. We show that RSMAR and GMRES terminate with the same least squares solution when applied to range-symmetric linear systems. We provide two implementations for RSMAR. Our numerical experiments show that RSMAR is the most suitable method among GMRES-type methods for singular inconsistent range-symmetric linear systems.
In this paper, we formulate and analyse a geometric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and thus it has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures its good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.
In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.