亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the paper, we describe in operator form classes of PDEs that admit PINN's error estimation. Also, for $L^p$ spaces, we obtain a Bramble-Hilbert type lemma that is a tool for PINN's residuals bounding.

相關內容

In this paper we study two dimensional minimal linear code over the ring $\mathbb{Z}_{p^n}$(where $p$ is prime). We show that if the generator matrix $G$ of the two dimensional linear code $M$ contains $p^n+p^{n-1}$ column vector of the following type {\scriptsize{$u_{l_1}\begin{pmatrix} 1\\ 0 \end{pmatrix}$, $u_{l_2}\begin{pmatrix} 0\\1 \end{pmatrix}$, $u_{l_3}\begin{pmatrix} 1\\u_1 \end{pmatrix}$, $u_{l_4}\begin{pmatrix} 1\\u_2 \end{pmatrix}$, \ldots,$u_{l_{p^n-p^{n-1}+2}} \begin{pmatrix} 1\\u_{p^n-p^{n-1}} \end{pmatrix}$, $u_{l_{p^n-p^{n-1}+3}}\begin{pmatrix} d_1 \\ 1 \end{pmatrix}$, $u_{l_{p^n-p^{n-1}+4}}\begin{pmatrix} d_2\\ 1 \end{pmatrix}$,\ldots \dots,\\ $u_{l_{p^n+1}}\begin{pmatrix} d_{p^{n-1}-1}\\1 \end{pmatrix}$, $u_{l_{p^n+2}}\begin{pmatrix} 1\\d_1 \end{pmatrix}$, $u_{l_{p^n+3}}\begin{pmatrix} 1\\d_2 \end{pmatrix}$,\ldots,$u_{l_{p^n+p^{n-1}}}\begin{pmatrix} 1 \\d_{p^{n-1}-1} \end{pmatrix}$}}, where $u_i$ and $d_j$ are distinct units and zero divisors respectively in the ring $\mathbb{Z}_{p^n}$ for $1\leq i \leq p^n+p^{n-1}$, $1\leq j \leq p^{n-1}-1$ and additionally, denote $u_{l_i}$ as units in $\mathbb{Z}_{p^n}$, then the module generated by $G$ is a minimal linear code. Also we show that if any one column vector of the above types are not present entirely in $G$, then the generated module is not a minimal linear code.

Phase field models are gradient flows with their energy naturally dissipating in time. In order to preserve this property, many numerical schemes have been well-studied. In this paper we consider a well-known method, namely the exponential integrator method (EI). In the literature a few works studied several EI schemes for various phase field models and proved the energy dissipation by either requiring a strong Lipschitz condition on the nonlinear source term or certain $L^\infty$ bounds on the numerical solutions (maximum principle). However for phase field models such as the (non-local) Cahn-Hilliard equation, the maximum principle no longer exists. As a result, solving such models via EI schemes remains open for a long time. In this paper we aim to give a systematic approach on applying EI-type schemes to such models by solving the Cahn-Hilliard equation with a first order EI scheme and showing the energy dissipation. In fact second order EI schemes can be handled similarly and we leave the discussion in a subsequent paper. To our best knowledge, this is the first work to handle phase field models without assuming any strong Lipschitz condition or $L^\infty$ boundedness. Furthermore, we will analyze the $L^2$ error and present some numerical simulations to demonstrate the dynamics.

This work delves into the exponential time differencing (ETD) schemes for the matrix-valued Allen-Cahn equation. In fact, the maximum bound principle (MBP) for the first- and second-order ETD schemes is presented in a prior publication [SIAM Review, 63(2), 2021], assuming a symmetric initial matrix field. Noteworthy is our novel contribution, demonstrating that the first- and second-order ETD schemes for the matrix-valued Allen-Cahn equation -- both being linear schemes -- unconditionally preserve the MBP, even in instances of nonsymmetric initial conditions. Additionally, we prove that these two ETD schemes preserve the energy dissipation law unconditionally for the matrix-valued Allen-Cahn equation. Some numerical examples are presented to verify our theoretical results and to simulate the evolution of corresponding matrix fields.

It is often claimed that the theory of function levels proposed by Frege in Grundgesetze der Arithmetik anticipates the hierarchy of types that underlies Church's simple theory of types. This claim roughly states that Frege presupposes a type of functions in the sense of simple type theory in the expository language of Grundgesetze. However, this view makes it hard to accommodate function names of two arguments and view functions as incomplete entities. I propose and defend an alternative interpretation of first-level function names in Grundgesetze into simple type-theoretic open terms rather than into closed terms of a function type. This interpretation offers a still unhistorical but more faithful type-theoretic approximation of Frege's theory of levels and can be naturally extended to accommodate second-level functions. It is made possible by two key observations that Frege's Roman markers behave essentially like open terms and that Frege lacks a clear criterion for distinguishing between Roman markers and function names.

In PDE-constrained optimization, one aims to find design parameters that minimize some objective, subject to the satisfaction of a partial differential equation. A major challenges is computing gradients of the objective to the design parameters, as applying the chain rule requires computing the Jacobian of the design parameters to the PDE's state. The adjoint method avoids this Jacobian by computing partial derivatives of a Lagrangian. Evaluating these derivatives requires the solution of a second PDE with the adjoint differential operator to the constraint, resulting in a backwards-in-time simulation. Particle-based Monte Carlo solvers are often used to compute the solution to high-dimensional PDEs. However, such solvers have the drawback of introducing noise to the computed results, thus requiring stochastic optimization methods. To guarantee convergence in this setting, both the constraint and adjoint Monte Carlo simulations should simulate the same particle trajectories. For large simulations, storing full paths from the constraint equation for re-use in the adjoint equation becomes infeasible due to memory limitations. In this paper, we provide a reversible extension to the family of permuted congruential pseudorandom number generators (PCG). We then use such a generator to recompute these time-reversed paths for the heat equation, avoiding these memory issues.

In this paper, we present a stochastic method for the simulation of Laplace's equation with a mixed boundary condition in planar domains that are polygonal or bounded by circular arcs. We call this method the Reflected Walk on Spheres algorithm. The method combines a traditional Walk on Spheres algorithm with use of reflections at the Neumann boundaries. We apply our algorithm to simulate numerical conformal mappings from certain quadrilaterals to the corresponding canonical domains, and to compute their conformal moduli. Finally, we give examples of the method on three dimensional polyhedral domains, and use it to simulate the heat flow on an L-shaped insulated polyhedron.

In this paper, we formulate and analyse a symmetric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and the proposed integrator has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures the good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.

In the context of the stream calculus, we present an Implicit Function Theorem (IFT) for polynomial systems, and discuss its relations with the classical IFT from calculus. In particular, we demonstrate the advantages of the stream IFT from a computational point of view, and provide a few example applications where its use turns out to be valuable.

This paper proposes a new Helmholtz decomposition based windowed Green function (HD-WGF) method for solving the time-harmonic elastic scattering problems on a half-space with Dirichlet boundary conditions in both 2D and 3D. The Helmholtz decomposition is applied to separate the pressure and shear waves, which satisfy the Helmholtz and Helmholtz/Maxwell equations, respectively, and the corresponding boundary integral equations of type $(\mathbb{I}+\mathbb{T})\bs\phi=\bs f$, that couple these two waves on the unbounded surface, are derived based on the free-space fundamental solution of Helmholtz equation. This approach avoids the treatment of the complex elastic displacement tensor and traction operator that involved in the classical integral equation method for elastic problems. Then a smooth ``slow-rise'' windowing function is introduced to truncate the boundary integral equations and a ``correction'' strategy is proposed to ensure the uniformly fast convergence for all incident angles of plane incidence. Numerical experiments for both two and three dimensional problems are presented to demonstrate the accuracy and efficiency of the proposed method.

Analysis-suitable $G^1$ (AS-$G^1$) multi-patch spline surfaces [4] are particular $G^1$-smooth multi-patch spline surfaces, which are needed to ensure the construction of $C^1$-smooth multi-patch spline spaces with optimal polynomial reproduction properties [16]. We present a novel local approach for the design of AS-$G^1$ multi-patch spline surfaces, which is based on the use of Lagrange multipliers. The presented method is simple and generates an AS-$G^1$ multi-patch spline surface by approximating a given $G^1$-smooth but non-AS-$G^1$ multi-patch surface. Several numerical examples demonstrate the potential of the proposed technique for the construction of AS-$G^1$ multi-patch spline surfaces and show that these surfaces are especially suited for applications in isogeometric analysis by solving the biharmonic problem, a particular fourth order partial differential equation, with optimal rates of convergence over them.

北京阿比特科技有限公司