In the context of the stream calculus, we present an Implicit Function Theorem (IFT) for polynomial systems, and discuss its relations with the classical IFT from calculus. In particular, we demonstrate the advantages of the stream IFT from a computational point of view, and provide a few example applications where its use turns out to be valuable.
In this paper, we use the Bayesian inversion approach to study the data assimilation problem for a family of tumor growth models described by porous-medium type equations. The models contain uncertain parameters and are indexed by a physical parameter $m$, which characterizes the constitutive relation between density and pressure. Based on these models, we employ the Bayesian inversion framework to infer parametric and nonparametric unknowns that affect tumor growth from noisy observations of tumor cell density. We establish the well-posedness and the stability theories for the Bayesian inversion problem and further prove the convergence of the posterior distribution in the so-called incompressible limit, $m \rightarrow \infty$. Since the posterior distribution across the index regime $m\in[2,\infty)$ can thus be treated in a unified manner, such theoretical results also guide the design of the numerical inference for the unknown. We propose a generic computational framework for such inverse problems, which consists of a typical sampling algorithm and an asymptotic preserving solver for the forward problem. With extensive numerical tests, we demonstrate that the proposed method achieves satisfactory accuracy in the Bayesian inference of the tumor growth models, which is uniform with respect to the constitutive relation.
In this paper, we propose to consider various models of pattern recognition. At the same time, it is proposed to consider models in the form of two operators: a recognizing operator and a decision rule. Algebraic operations are introduced on recognizing operators, and based on the application of these operators, a family of recognizing algorithms is created. An upper estimate is constructed for the model, which guarantees the completeness of the extension.
While branching network structures abound in nature, their objective analysis is more difficult than expected because existing quantitative methods often rely on the subjective judgment of branch structures. This problem is particularly pronounced when dealing with images comprising discrete particles. Here we propose an objective framework for quantitative analysis of branching networks by introducing the mathematical definitions for internal and external structures based on topological data analysis, specifically, persistent homology. We compare persistence diagrams constructed from images with and without plots on the convex hull. The unchanged points in the two diagrams are the internal structures and the difference between the two diagrams is the external structures. We construct a mathematical theory for our method and show that the internal structures have a monotonicity relationship with respect to the plots on the convex hull, while the external structures do not. This is the phenomenon related to the resolution of the image. Our method can be applied to a wide range of branch structures in biology, enabling objective analysis of numbers, spatial distributions, sizes, and more. Additionally, our method has the potential to be combined with other tools in topological data analysis, such as the generalized persistence landscape.
We consider bounded discrete time series. From its statistical feature, without any use of the Fourier transform, we find a suitable almost periodic function which approximates the corresponding time series in a local time interval.
In 2012 Chen and Singer introduced the notion of discrete residues for rational functions as a complete obstruction to rational summability. More explicitly, for a given rational function f(x), there exists a rational function g(x) such that f(x) = g(x+1) - g(x) if and only if every discrete residue of f(x) is zero. Discrete residues have many important further applications beyond summability: to creative telescoping problems, thence to the determination of (differential-)algebraic relations among hypergeometric sequences, and subsequently to the computation of (differential) Galois groups of difference equations. However, the discrete residues of a rational function are defined in terms of its complete partial fraction decomposition, which makes their direct computation impractical due to the high complexity of completely factoring arbitrary denominator polynomials into linear factors. We develop a factorization-free algorithm to compute discrete residues of rational functions, relying only on gcd computations and linear algebra.
In this paper, we study the Boltzmann equation with uncertainties and prove that the spectral convergence of the semi-discretized numerical system holds in a combined velocity and random space, where the Fourier-spectral method is applied for approximation in the velocity space whereas the generalized polynomial chaos (gPC)-based stochastic Galerkin (SG) method is employed to discretize the random variable. Our proof is based on a delicate energy estimate for showing the well-posedness of the numerical solution as well as a rigorous control of its negative part in our well-designed functional space that involves high-order derivatives of both the velocity and random variables. This paper rigorously justifies the statement proposed in [Remark 4.4, J. Hu and S. Jin, J. Comput. Phys., 315 (2016), pp. 150-168].
We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.
In this study, we explore data assimilation for the Stochastic Camassa-Holm equation through the application of the particle filtering framework. Specifically, our approach integrates adaptive tempering, jittering, and nudging techniques to construct an advanced particle filtering system. All filtering processes are executed utilizing ensemble parallelism. We conduct extensive numerical experiments across various scenarios of the Stochastic Camassa-Holm model with transport noise and viscosity to examine the impact of different filtering procedures on the performance of the data assimilation process. Our analysis focuses on how observational data and the data assimilation step influence the accuracy and uncertainty of the obtained results.
In this paper, we combine the Smolyak technique for multi-dimensional interpolation with the Filon-Clenshaw-Curtis (FCC) rule for one-dimensional oscillatory integration, to obtain a new Filon-Clenshaw-Curtis-Smolyak (FCCS) rule for oscillatory integrals with linear phase over the $d-$dimensional cube $[-1,1]^d$. By combining stability and convergence estimates for the FCC rule with error estimates for the Smolyak interpolation operator, we obtain an error estimate for the FCCS rule, consisting of the product of a Smolyak-type error estimate multiplied by a term that decreases with $\mathcal{O}(k^{-\tilde{d}})$, where $k$ is the wavenumber and $\tilde{d}$ is the number of oscillatory dimensions. If all dimensions are oscillatory, a higher negative power of $k$ appears in the estimate. As an application, we consider the forward problem of uncertainty quantification (UQ) for a one-space-dimensional Helmholtz problem with wavenumber $k$ and a random heterogeneous refractive index, depending in an affine way on $d$ i.i.d. uniform random variables. After applying a classical hybrid numerical-asymptotic approximation, expectations of functionals of the solution of this problem can be formulated as a sum of oscillatory integrals over $[-1,1]^d$, which we compute using the FCCS rule. We give numerical results for the FCCS rule and the UQ algorithm showing that accuracy improves when both $k$ and the order of the rule increase. We also give results for dimension-adaptive sparse grid FCCS quadrature showing its efficiency as dimension increases.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.