亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transformers and their multi-head attention mechanism have completely changed the machine learning landscape in just a few years, by outperforming state-of-art models in a wide range of domains. Still, little is known about their robustness from a theoretical perspective. We tackle this problem by studying the local Lipschitz constant of self-attention, that provides an attack-agnostic way of measuring the robustness of a neural network. We adopt a measure-theoretic framework, by viewing inputs as probability measures equipped with the Wasserstein distance. This allows us to generalize attention to inputs of infinite length, and to derive an upper bound and a lower bound on the Lipschitz constant of self-attention on compact sets. The lower bound significantly improves prior results, and grows more than exponentially with the radius of the compact set, which rules out the possibility of obtaining robustness guarantees without any additional constraint on the input space. Our results also point out that measures with a high local Lipschitz constant are typically made of a few diracs, with a very unbalanced distribution of mass. Finally, we analyze the stability of self-attention under perturbations that change the number of tokens, which appears to be a natural question in the measure-theoretic framework. In particular, we show that for some inputs, attacks that duplicate tokens before perturbing them are more efficient than attacks that simply move tokens. We call this phenomenon mass splitting.

相關內容

In recent years, there has been a significant increase in the utilization of deep learning methods, particularly convolutional neural networks (CNNs), which have emerged as the dominant approach in various domains that involve structured grid data, such as picture analysis and processing. Nevertheless, the exponential growth in the utilization of LiDAR and 3D sensors across many domains has resulted in an increased need for the analysis of 3D point clouds. The utilization of 3D point clouds is crucial in various applications, including object recognition and segmentation, as they offer a spatial depiction of things within a three-dimensional environment. In contrast to photos, point clouds exhibit sparsity and lack a regular grid, hence posing distinct processing and computational issues.

Anomaly detection requires detecting abnormal samples in large unlabeled datasets. While progress in deep learning and the advent of foundation models has produced powerful zero-shot anomaly detection methods, their deployment in practice is often hindered by the lack of labeled data -- without it, their detection performance cannot be evaluated reliably. In this work, we propose SWSA (Selection With Synthetic Anomalies): a general-purpose framework to select image-based anomaly detectors with a generated synthetic validation set. Our proposed anomaly generation method assumes access to only a small support set of normal images and requires no training or fine-tuning. Once generated, our synthetic validation set is used to create detection tasks that compose a validation framework for model selection. In an empirical study, we find that SWSA often selects models that match selections made with a ground-truth validation set, resulting in higher AUROCs than baseline methods. We also find that SWSA selects prompts for CLIP-based anomaly detection that outperform baseline prompt selection strategies on all datasets, including the challenging MVTec-AD and VisA datasets.

The aim of this workshop is to bring together experts working on open-domain dialogue research. In this speedily advancing research area many challenges still exist, such as learning information from conversations, engaging in realistic and convincing simulation of human intelligence and reasoning. SCI-CHAT follows previous workshops on open domain dialogue but with a focus on the simulation of intelligent conversation as judged in a live human evaluation. Models aim to include the ability to follow a challenging topic over a multi-turn conversation, while positing, refuting and reasoning over arguments. The workshop included both a research track and shared task. The main goal of this paper is to provide an overview of the shared task and a link to an additional paper that will include an in depth analysis of the shared task results following presentation at the workshop.

In recent years, self-supervised learning has excelled for its capacity to learn robust feature representations from unlabelled data. Networks pretrained through self-supervision serve as effective feature extractors for downstream tasks, including Few-Shot Learning. While the evaluation of unsupervised approaches for few-shot learning is well-established in imagery, it is notably absent in acoustics. This study addresses this gap by assessing large-scale self-supervised models' performance in few-shot audio classification. Additionally, we explore the relationship between a model's few-shot learning capability and other downstream task benchmarks. Our findings reveal state-of-the-art performance in some few-shot problems such as SpeechCommandsv2, as well as strong correlations between speech-based few-shot problems and various downstream audio tasks.

AI-generated medical images are gaining growing popularity due to their potential to address the data scarcity challenge in the real world. However, the issue of accurate identification of these synthetic images, particularly when they exhibit remarkable realism with their real copies, remains a concern. To mitigate this challenge, image generators such as DALLE and Imagen, have integrated digital watermarks aimed at facilitating the discernment of synthetic images' authenticity. These watermarks are embedded within the image pixels and are invisible to the human eye while remains their detectability. Nevertheless, a comprehensive investigation into the potential impact of these invisible watermarks on the utility of synthetic medical images has been lacking. In this study, we propose the incorporation of invisible watermarks into synthetic medical images and seek to evaluate their efficacy in the context of downstream classification tasks. Our goal is to pave the way for discussions on the viability of such watermarks in boosting the detectability of synthetic medical images, fortifying ethical standards, and safeguarding against data pollution and potential scams.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司