Let $F$ be a finite field, let $f$ be a function from $F$ to $F$, and let $a$ be a nonzero element of $F$. The discrete derivative of $f$ in direction $a$ is $\Delta_a f \colon F \to F$ with $(\Delta_a f)(x)=f(x+a)-f(x)$. The differential spectrum of $f$ is the multiset of cardinalities of all the fibers of all the derivatives $\Delta_a f$ as $a$ runs through $F^*$. The function $f$ is almost perfect nonlinear (APN) if the largest cardinality in the differential spectrum is $2$. Almost perfect nonlinear functions are of interest as cryptographic primitives. If $d$ is a positive integer, the power function over $F$ with exponent $d$ is the function $f \colon F \to F$ with $f(x)=x^d$ for every $x \in F$. There is a small number of known infinite families of APN power functions. In this paper, we re-express the exponents for one such family in a more convenient form. This enables us to give the differential spectrum and, even more, to determine the sizes of individual fibers of derivatives.
Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.
We study how to verify specific frequency distributions when we observe a stream of $N$ data items taken from a universe of $n$ distinct items. We introduce the \emph{relative Fr\'echet distance} to compare two frequency functions in a homogeneous manner. We consider two streaming models: insertions only and sliding windows. We present a Tester for a certain class of functions, which decides if $f $ is close to $g$ or if $f$ is far from $g$ with high probability, when $f$ is given and $g$ is defined by a stream. If $f$ is uniform we show a space $\Omega(n)$ lower bound. If $f$ decreases fast enough, we then only use space $O(\log^2 n\cdot \log\log n)$. The analysis relies on the Spacesaving algorithm \cite{MAE2005,Z22} and on sampling the stream.
Parametric mathematical models such as parameterizations of partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantification. The model uncertainties are often represented via a series expansion in terms of the parametric variables. In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model. There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration. In this paper, we study the $L^2$ dimension truncation error of the parametric model problem. Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions. In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables. Numerical results are presented which showcase the sharpness of the theoretical results.
We study the behavior of a label propagation algorithm (LPA) on the Erd\H{o}s-R\'enyi random graph $\mathcal{G}(n,p)$. Initially, given a network, each vertex starts with a random label in the interval $[0,1]$. Then, in each round of LPA, every vertex switches its label to the majority label in its neighborhood (including its own label). At the first round, ties are broken towards smaller labels, while at each of the next rounds, ties are broken uniformly at random. The algorithm terminates once all labels stay the same in two consecutive iterations. LPA is successfully used in practice for detecting communities in networks (corresponding to vertex sets with the same label after termination of the algorithm). Perhaps surprisingly, LPA's performance on dense random graphs is hard to analyze, and so far convergence to consenus was known only when $np\ge n^{3/4+\varepsilon}$. By a very careful multi-stage exposure of the edges, we break this barrier and show that, when $np \ge n^{5/8+\varepsilon}$, a.a.s. the algorithm terminates with a single label. Moreover, we show that, if $np\gg n^{2/3}$, a.a.s. this label is the smallest one, whereas if $n^{5/8+\varepsilon}\le np\ll n^{2/3}$, the surviving label is a.a.s. not the smallest one.
A family of stabilizer-free $P_k$ virtual elements are constructed on triangular meshes. When choosing an accurate and proper interpolation, the stabilizer of the virtual elements can be dropped while the quasi-optimality is kept. The interpolating space here is the space of continuous $P_k$ polynomials on the Hsieh-Clough-Tocher macro-triangle, where the macro-triangle is defined by connecting three vertices of a triangle with its barycenter. We show that such an interpolation preserves $P_k$ polynomials locally and enforces the coerciveness of the resulting bilinear form. Consequently the stabilizer-free virtual element solutions converge at the optimal order. Numerical tests are provided to confirm the theory and to be compared with existing virtual elements.
We show that the problem of counting the number of $n$-variable unate functions reduces to the problem of counting the number of $n$-variable monotone functions. Using recently obtained results on $n$-variable monotone functions, we obtain counts of $n$-variable unate functions up to $n=9$. We use an enumeration strategy to obtain the number of $n$-variable balanced monotone functions up to $n=7$. We show that the problem of counting the number of $n$-variable balanced unate functions reduces to the problem of counting the number of $n$-variable balanced monotone functions, and consequently, we obtain the number of $n$-variable balanced unate functions up to $n=7$. Using enumeration, we obtain the numbers of equivalence classes of $n$-variable balanced monotone functions, unate functions and balanced unate functions up to $n=6$. Further, for each of the considered sub-class of $n$-variable monotone and unate functions, we also obtain the corresponding numbers of $n$-variable non-degenerate functions.
We describe a new algorithm for vertex cover with runtime $O^*(1.25284^k)$, where $k$ is the size of the desired solution and $O^*$ hides polynomial factors in the input size. This improves over previous runtime of $O^*(1.2738^k)$ due to Chen, Kanj, & Xia (2010) standing for more than a decade. The key to our algorithm is to use a potential function which simultaneously tracks $k$ as well as the optimal value $\lambda$ of the vertex cover LP relaxation. This approach also allows us to make use of prior algorithms for Maximum Independent Set in bounded-degree graphs and Above-Guarantee Vertex Cover. The main step in the algorithm is to branch on high-degree vertices, while ensuring that both $k$ and $\mu = k - \lambda$ are decreased at each step. There can be local obstructions in the graph that prevent $\mu$ from decreasing in this process; we develop a number of novel branching steps to handle these situations.
This paper presents a reduced algorithm to the classical projection method for the solution of $d$-dimensional quasiperiodic problems, particularly Schr\"{o}dinger eigenvalue problems. Using the properties of the Schr\"{o}dinger operator in higher-dimensional space via a projection matrix of size $d\times n$, we rigorously prove that the generalized Fourier coefficients of the eigenfunctions decay exponentially along a fixed direction associated with the projection matrix. An efficient reduction strategy of the basis space is then proposed to reduce the degrees of freedom from $O(N^{n})$ to $O(N^{n-d}D^d)$, where $N$ is the number of Fourier grids in one dimension and the truncation coefficient $D$ is much less than $N$. Correspondingly, the computational complexity of the proposed algorithm for solving the first $k$ eigenpairs using the Krylov subspace method decreases from $O(kN^{2n})$ to $O(kN^{2(n-d)}D^{2d})$. Rigorous error estimates of the proposed reduced projection method are provided, indicating that a small $D$ is sufficient to achieve the same level of accuracy as the classical projection method. We present numerical examples of quasiperiodic Schr\"{o}dinger eigenvalue problems in one and two dimensions to demonstrate the accuracy and efficiency of our proposed method.
A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.
Standard multiparameter eigenvalue problems (MEPs) are systems of $k\ge 2$ linear $k$-parameter square matrix pencils. Recently, a new form of multiparameter eigenvalue problems has emerged: a rectangular MEP (RMEP) with only one multivariate rectangular matrix pencil, where we are looking for combinations of the parameters for which the rank of the pencil is not full. Applications include finding the optimal least squares autoregressive moving average (ARMA) model and the optimal least squares realization of autonomous linear time-invariant (LTI) dynamical system. For linear and polynomial RMEPs, we give the number of solutions and show how these problems can be solved numerically by a transformation into a standard MEP. For the transformation we provide new linearizations for quadratic multivariate matrix polynomials with a specific structure of monomials and consider mixed systems of rectangular and square multivariate matrix polynomials. This numerical approach seems computationally considerably more attractive than the block Macaulay method, the only other currently available numerical method for polynomial RMEPs.