亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new unified optimization algorithm for general tensor decomposition which is formulated as an inverse problem for low-rank tensors in the general linear observation models. The proposed algorithm supports three basic loss functions ($\ell_2$-loss, $\ell_1$-loss and KL divergence) and various low-rank tensor decomposition models (CP, Tucker, TT, and TR decompositions). We derive the optimization algorithm based on hierarchical combination of the alternating direction method of multiplier (ADMM) and majorization-minimization (MM). We show that wide-range applications can be solved by the proposed algorithm, and can be easily extended to any established tensor decomposition models in a {plug-and-play} manner.

相關內容

In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper.

Optimal transport (OT) barycenters are a mathematically grounded way of averaging probability distributions while capturing their geometric properties. In short, the barycenter task is to take the average of a collection of probability distributions w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our approach is built upon the dual reformulation of the EOT problem based on weak OT, which has recently gained the attention of the ML community. Beyond its novelty, our method enjoys several advantageous properties: (i) we establish quality bounds for the recovered solution; (ii) this approach seemlessly interconnects with the Energy-Based Models (EBMs) learning procedure enabling the use of well-tuned algorithms for the problem of interest; (iii) it provides an intuitive optimization scheme avoiding min-max, reinforce and other intricate technical tricks. For validation, we consider several low-dimensional scenarios and image-space setups, including non-Euclidean cost functions. Furthermore, we investigate the practical task of learning the barycenter on an image manifold generated by a pretrained generative model, opening up new directions for real-world applications.

A confidence sequence (CS) is a sequence of confidence sets that contains a target parameter of an underlying stochastic process at any time step with high probability. This paper proposes a new approach to constructing CSs for means of bounded multivariate stochastic processes using a general gambling framework, extending the recently established coin toss framework for bounded random processes. The proposed gambling framework provides a general recipe for constructing CSs for categorical and probability-vector-valued observations, as well as for general bounded multidimensional observations through a simple reduction. This paper specifically explores the use of the mixture portfolio, akin to Cover's universal portfolio, in the proposed framework and investigates the properties of the resulting CSs. Simulations demonstrate the tightness of these confidence sequences compared to existing methods. When applied to the sampling without-replacement setting for finite categorical data, it is shown that the resulting CS based on a universal gambling strategy is provably tighter than that of the posterior-prior ratio martingale proposed by Waudby-Smith and Ramdas.

We construct a randomized vector quantizer which has a smaller maximum error compared to all known lattice quantizers with the same entropy for dimensions 5, 6, ..., 48, and also has a smaller mean squared error compared to known lattice quantizers with the same entropy for dimensions 35, ..., 48, in the high resolution limit. Moreover, our randomized quantizer has a desirable property that the quantization error is always uniform over the ball and independent of the input. Our construction is based on applying rejection sampling on universal quantization, which allows us to shape the error distribution to be any continuous distribution, not only uniform distributions over basic cells of a lattice as in conventional dithered quantization. We also characterize the high SNR limit of one-shot channel simulation for any additive noise channel under a mild assumption (e.g., the AWGN channel), up to an additive constant of 1.45 bits.

In this paper, we investigate the negative effect of activation functions on forward and backward propagation and how to counteract this effect. First, We examine how activation functions affect the forward and backward propagation of neural networks and derive a general form for gradient variance that extends the previous work in this area. We try to use mini-batch statistics to dynamically update the normalization factor to ensure the normalization property throughout the training process, rather than only accounting for the state of the neural network after weight initialization. Second, we propose ANAct, a method that normalizes activation functions to maintain consistent gradient variance across layers and demonstrate its effectiveness through experiments. We observe that the convergence rate is roughly related to the normalization property. We compare ANAct with several common activation functions on CNNs and residual networks and show that ANAct consistently improves their performance. For instance, normalized Swish achieves 1.4\% higher top-1 accuracy than vanilla Swish on ResNet50 with the Tiny ImageNet dataset and more than 1.2\% higher with CIFAR-100.

In this paper, we study the stochastic collocation (SC) methods for uncertainty quantification (UQ) in hyperbolic systems of nonlinear partial differential equations (PDEs). In these methods, the underlying PDEs are numerically solved at a set of collocation points in random space. A standard SC approach is based on a generalized polynomial chaos (gPC) expansion, which relies on choosing the collocation points based on the prescribed probability distribution and approximating the computed solution by a linear combination of orthogonal polynomials in the random variable. We demonstrate that this approach struggles to accurately capture discontinuous solutions, often leading to oscillations (Gibbs phenomenon) that deviate significantly from the physical solutions. We explore alternative SC methods, in which one can choose an arbitrary set of collocation points and employ shape-preserving splines to interpolate the solution in a random space. Our study demonstrates the effectiveness of spline-based collocation in accurately capturing and assessing uncertainties while suppressing oscillations. We illustrate the superiority of the spline-based collocation on two numerical examples, including the inviscid Burgers and shallow water equations.

To address the communication bottleneck challenge in distributed learning, our work introduces a novel two-stage quantization strategy designed to enhance the communication efficiency of distributed Stochastic Gradient Descent (SGD). The proposed method initially employs truncation to mitigate the impact of long-tail noise, followed by a non-uniform quantization of the post-truncation gradients based on their statistical characteristics. We provide a comprehensive convergence analysis of the quantized distributed SGD, establishing theoretical guarantees for its performance. Furthermore, by minimizing the convergence error, we derive optimal closed-form solutions for the truncation threshold and non-uniform quantization levels under given communication constraints. Both theoretical insights and extensive experimental evaluations demonstrate that our proposed algorithm outperforms existing quantization schemes, striking a superior balance between communication efficiency and convergence performance.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司