In this paper, we investigate the negative effect of activation functions on forward and backward propagation and how to counteract this effect. First, We examine how activation functions affect the forward and backward propagation of neural networks and derive a general form for gradient variance that extends the previous work in this area. We try to use mini-batch statistics to dynamically update the normalization factor to ensure the normalization property throughout the training process, rather than only accounting for the state of the neural network after weight initialization. Second, we propose ANAct, a method that normalizes activation functions to maintain consistent gradient variance across layers and demonstrate its effectiveness through experiments. We observe that the convergence rate is roughly related to the normalization property. We compare ANAct with several common activation functions on CNNs and residual networks and show that ANAct consistently improves their performance. For instance, normalized Swish achieves 1.4\% higher top-1 accuracy than vanilla Swish on ResNet50 with the Tiny ImageNet dataset and more than 1.2\% higher with CIFAR-100.
In this paper, we concentrate on decentralized optimization problems with nonconvex and nonsmooth objective functions, especially on the decentralized training of nonsmooth neural networks. We introduce a unified framework, named DSM, to analyze the global convergence of decentralized stochastic subgradient methods. We prove the global convergence of our proposed framework under mild conditions, by establishing that the generated sequence asymptotically approximates the trajectories of its associated differential inclusion. Furthermore, we establish that our proposed framework encompasses a wide range of existing efficient decentralized subgradient methods, including decentralized stochastic subgradient descent (DSGD), DSGD with gradient-tracking technique (DSGD-T), and DSGD with momentum (DSGDm). In addition, we introduce SignSGD employing the sign map to regularize the update directions in DSGDm, and show it is enclosed in our proposed framework. Consequently, our convergence results establish, for the first time, global convergence of these methods when applied to nonsmooth nonconvex objectives. Preliminary numerical experiments demonstrate that our proposed framework yields highly efficient decentralized subgradient methods with convergence guarantees in the training of nonsmooth neural networks.
In this paper, we formulate the multi-agent graph bandit problem as a multi-agent extension of the graph bandit problem introduced by Zhang, Johansson, and Li [CISS 57, 1-6 (2023)]. In our formulation, $N$ cooperative agents travel on a connected graph $G$ with $K$ nodes. Upon arrival at each node, agents observe a random reward drawn from a node-dependent probability distribution. The reward of the system is modeled as a weighted sum of the rewards the agents observe, where the weights capture some transformation of the reward associated with multiple agents sampling the same node at the same time. We propose an Upper Confidence Bound (UCB)-based learning algorithm, Multi-G-UCB, and prove that its expected regret over $T$ steps is bounded by $O(\gamma N\log(T)[\sqrt{KT} + DK])$, where $D$ is the diameter of graph $G$ and $\gamma$ a boundedness parameter associated with the weight functions. Lastly, we numerically test our algorithm by comparing it to alternative methods.
In this paper, we discuss the development of an annotation schema to build datasets for evaluating the offline harm potential of social media texts. We define "harm potential" as the potential for an online public post to cause real-world physical harm (i.e., violence). Understanding that real-world violence is often spurred by a web of triggers, often combining several online tactics and pre-existing intersectional fissures in the social milieu, to result in targeted physical violence, we do not focus on any single divisive aspect (i.e., caste, gender, religion, or other identities of the victim and perpetrators) nor do we focus on just hate speech or mis/dis-information. Rather, our understanding of the intersectional causes of such triggers focuses our attempt at measuring the harm potential of online content, irrespective of whether it is hateful or not. In this paper, we discuss the development of a framework/annotation schema that allows annotating the data with different aspects of the text including its socio-political grounding and intent of the speaker (as expressed through mood and modality) that together contribute to it being a trigger for offline harm. We also give a comparative analysis and mapping of our framework with some of the existing frameworks.
In this paper, we study the individual preference (IP) stability, which is an notion capturing individual fairness and stability in clustering. Within this setting, a clustering is $\alpha$-IP stable when each data point's average distance to its cluster is no more than $\alpha$ times its average distance to any other cluster. In this paper, we study the natural local search algorithm for IP stable clustering. Our analysis confirms a $O(\log n)$-IP stability guarantee for this algorithm, where $n$ denotes the number of points in the input. Furthermore, by refining the local search approach, we show it runs in an almost linear time, $\tilde{O}(nk)$.
In this paper, we discuss the development and deployment of a robust autonomous system capable of performing various tasks in the maritime domain under unknown dynamic conditions. We investigate a data-driven approach based on modular design for ease of transfer of autonomy across different maritime surface vessel platforms. The data-driven approach alleviates issues related to a priori identification of system models that may become deficient under evolving system behaviors or shifting, unanticipated, environmental influences. Our proposed learning-based platform comprises a deep Koopman system model and a change point detector that provides guidance on domain shifts prompting relearning under severe exogenous and endogenous perturbations. Motion control of the autonomous system is achieved via an optimal controller design. The Koopman linearized model naturally lends itself to a linear-quadratic regulator (LQR) control design. We propose the C3D control architecture Cascade Control with Change Point Detection and Deep Koopman Learning. The framework is verified in station keeping task on an ASV in both simulation and real experiments. The approach achieved at least 13.9 percent improvement in mean distance error in all test cases compared to the methods that do not consider system changes.
With the comprehensive research conducted on various face analysis tasks, there is a growing interest among researchers to develop a unified approach to face perception. Existing methods mainly discuss unified representation and training, which lack task extensibility and application efficiency. To tackle this issue, we focus on the unified model structure, exploring a face generalist model. As an intuitive design, Naive Faceptor enables tasks with the same output shape and granularity to share the structural design of the standardized output head, achieving improved task extensibility. Furthermore, Faceptor is proposed to adopt a well-designed single-encoder dual-decoder architecture, allowing task-specific queries to represent new-coming semantics. This design enhances the unification of model structure while improving application efficiency in terms of storage overhead. Additionally, we introduce Layer-Attention into Faceptor, enabling the model to adaptively select features from optimal layers to perform the desired tasks. Through joint training on 13 face perception datasets, Faceptor achieves exceptional performance in facial landmark localization, face parsing, age estimation, expression recognition, binary attribute classification, and face recognition, achieving or surpassing specialized methods in most tasks. Our training framework can also be applied to auxiliary supervised learning, significantly improving performance in data-sparse tasks such as age estimation and expression recognition. The code and models will be made publicly available at //github.com/lxq1000/Faceptor.
In this paper, we explore the unique modality of sketch for explainability, emphasising the profound impact of human strokes compared to conventional pixel-oriented studies. Beyond explanations of network behavior, we discern the genuine implications of explainability across diverse downstream sketch-related tasks. We propose a lightweight and portable explainability solution -- a seamless plugin that integrates effortlessly with any pre-trained model, eliminating the need for re-training. Demonstrating its adaptability, we present four applications: highly studied retrieval and generation, and completely novel assisted drawing and sketch adversarial attacks. The centrepiece to our solution is a stroke-level attribution map that takes different forms when linked with downstream tasks. By addressing the inherent non-differentiability of rasterisation, we enable explanations at both coarse stroke level (SLA) and partial stroke level (P-SLA), each with its advantages for specific downstream tasks.
In this paper, we introduce a new flow-based method for global optimization of Lipschitz functions, called Stein Boltzmann Sampling (SBS). Our method samples from the Boltzmann distribution that becomes asymptotically uniform over the set of the minimizers of the function to be optimized. Candidate solutions are sampled via the \emph{Stein Variational Gradient Descent} algorithm. We prove the asymptotic convergence of our method, introduce two SBS variants, and provide a detailed comparison with several state-of-the-art global optimization algorithms on various benchmark functions. The design of our method, the theoretical results, and our experiments, suggest that SBS is particularly well-suited to be used as a continuation of efficient global optimization methods as it can produce better solutions while making a good use of the budget.
In this paper, we address the problem of estimating the rotational extrinsics, as well as the scale factors of two gyroscopes rigidly mounted on the same device. In particular, we formulate the problem as a least-squares minimization and introduce a direct algorithm that computes the estimated quantities without any iterations, hence avoiding local minima and improving efficiency. Furthermore, we show that the rotational extrinsics are observable while the scale factors can be determined up to global scale for general configurations of the gyroscopes. To this end, we also study special placements of the gyroscopes where a pair, or all, of their axes are parallel and analyze their impact on the scale factors' observability. Lastly, we evaluate our algorithm in simulations and real-world experiments to assess its performance as a function of key motion and sensor characteristics.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax