亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the $L^2$ product in each cell of the discretization, we are able to mimic the behavior of the Slotboom variables, and eliminate the drift term from the local matrix contributions, while still solving the problem for the primal variables. We show that the proposed numerical scheme is well-posed, and validate numerically that it has the same properties as classical HDG methods, including optimal convergence, and superconvergence of postprocessed solutions. For polynomial degree zero, dimension one, and vanishing HDG stabilization parameter, W-HDG coincides with the Scharfetter-Gummel finite volume scheme (i.e., it produces the same system matrix). The use of local exponential weights generalizes the Scharfetter-Gummel scheme (the state-of-the-art for finite volume discretization of transport dominated problems) to arbitrary high order approximations.

相關內容

In Stein's method, one can characterize probability distributions with differential operators. We use these characterizations to obtain a new class of point estimators for i.i.d.\ observations. These so-called Stein estimators satisfy the desirable classical properties such as consistency and asymptotic normality. As a consequence of the usually simple form of the operator, we obtain explicit estimators in cases where standard methods such as maximum likelihood estimation (MLE) require a numerical procedure to calculate the estimate. In addition, with our approach, one can choose from a large class of test functions which allows to improve significantly on the moment estimator. For several probability laws, we can determine an estimator that shows an asymptotic behaviour close to efficiency. Moreover, we retrieve data-dependent functions that result in asymptotically efficient estimators and give a sequence of explicit Stein estimators that converge to the MLE.

We present and analyze a hybridizable discontinuous Galerkin (HDG) finite element method for the coupled Stokes--Biot problem. Of particular interest is that the discrete velocities and displacement are $H(\text{div})$-conforming and satisfy the compressibility equations pointwise on the elements. Furthermore, in the incompressible limit, the discretization is strongly conservative. We prove well-posedness of the discretization and, after combining the HDG method with backward Euler time stepping, present a priori error estimates that demonstrate that the method is free of volumetric locking. Numerical examples further demonstrate optimal rates of convergence in the $L^2$-norm for all unknowns and that the discretization is locking-free.

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method.

In this paper, we present a numerical approach to solve the McKean-Vlasov equations, which are distribution-dependent stochastic differential equations, under some non-globally Lipschitz conditions for both the drift and diffusion coefficients. We establish a propagation of chaos result, based on which the McKean-Vlasov equation is approximated by an interacting particle system. A truncated Euler scheme is then proposed for the interacting particle system allowing for a Khasminskii-type condition on the coefficients. To reduce the computational cost, the random batch approximation proposed in [Jin et al., J. Comput. Phys., 400(1), 2020] is extended to the interacting particle system where the interaction could take place in the diffusion term. An almost half order of convergence is proved in $L^p$ sense. Numerical tests are performed to verify the theoretical results.

We propose statistically robust and computationally efficient linear learning methods in the high-dimensional batch setting, where the number of features $d$ may exceed the sample size $n$. We employ, in a generic learning setting, two algorithms depending on whether the considered loss function is gradient-Lipschitz or not. Then, we instantiate our framework on several applications including vanilla sparse, group-sparse and low-rank matrix recovery. This leads, for each application, to efficient and robust learning algorithms, that reach near-optimal estimation rates under heavy-tailed distributions and the presence of outliers. For vanilla $s$-sparsity, we are able to reach the $s\log (d)/n$ rate under heavy-tails and $\eta$-corruption, at a computational cost comparable to that of non-robust analogs. We provide an efficient implementation of our algorithms in an open-source $\mathtt{Python}$ library called $\mathtt{linlearn}$, by means of which we carry out numerical experiments which confirm our theoretical findings together with a comparison to other recent approaches proposed in the literature.

Deflation techniques are typically used to shift isolated clusters of small eigenvalues in order to obtain a tighter distribution and a smaller condition number. Such changes induce a positive effect in the convergence behavior of Krylov subspace methods, which are among the most popular iterative solvers for large sparse linear systems. We develop a deflation strategy for symmetric saddle point matrices by taking advantage of their underlying block structure. The vectors used for deflation come from an elliptic singular value decomposition relying on the generalized Golub-Kahan bidiagonalization process. The block targeted by deflation is the off-diagonal one since it features a problematic singular value distribution for certain applications. One example is the Stokes flow in elongated channels, where the off-diagonal block has several small, isolated singular values, depending on the length of the channel. Applying deflation to specific parts of the saddle point system is important when using solvers such as CRAIG, which operates on individual blocks rather than the whole system. The theory is developed by extending the existing framework for deflating square matrices before applying a Krylov subspace method like MINRES. Numerical experiments confirm the merits of our strategy and lead to interesting questions about using approximate vectors for deflation.

In this paper, we establish the links between the H\"older and Lehmer central tendencies and the maximum likelihood for the estimation of the one-parameter exponential family of probability density functions. For this, we show that the maximum weighted likelihood of the parameter is a generalized weighted mean from which the central tendencies of H\"older and Lehmer can be inferred. Some of the links obtained do not seem to be part of the state of the art. Moreover, we show that the maximum weighted likelihood is equivalent to the minimum of the weighted least square error. Experimentations confirm that the maximum weighted likelihood leads to a more accurate fitting of histograms.

This paper provides a comprehensive error analysis of learning with vector-valued random features (RF). The theory is developed for RF ridge regression in a fully general infinite-dimensional input-output setting, but nonetheless applies to and improves existing finite-dimensional analyses. In contrast to comparable work in the literature, the approach proposed here relies on a direct analysis of the underlying risk functional and completely avoids the explicit RF ridge regression solution formula in terms of random matrices. This removes the need for concentration results in random matrix theory or their generalizations to random operators. The main results established in this paper include strong consistency of vector-valued RF estimators under model misspecification and minimax optimal convergence rates in the well-specified setting. The parameter complexity (number of random features) and sample complexity (number of labeled data) required to achieve such rates are comparable with Monte Carlo intuition and free from logarithmic factors.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

北京阿比特科技有限公司