亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Poisson equation is critical to get a self-consistent solution in plasma fluid simulations used for Hall effect thrusters and streamers discharges. Solving the 2D Poisson equation with zero Dirichlet boundary conditions using a deep neural network is investigated using multiple-scale architectures, defined in terms of number of branches, depth and receptive field. The latter is found critical to correctly capture large topological structures of the field. The investigation of multiple architectures, losses, and hyperparameters provides an optimum network to solve accurately the steady Poisson problem. Generalization to new resolutions and domain sizes is then proposed using a proper scaling of the network. Finally, found neural network solver, called PlasmaNet, is coupled with an unsteady Euler plasma fluid equations solver. The test case corresponds to electron plasma oscillations which is used to assess the accuracy of the neural network solution in a time-dependent simulation. In this time-evolving problem, a physical loss is necessary to produce a stable simulation. PlasmaNet is then benchmarked on meshes with increasing number of nodes, and compared with an existing solver based on a standard linear system algorithm for the Poisson equation. It outperforms the classical plasma solver, up to speedups 700 times faster on large meshes. PlasmaNet is finally tested on a more complex case of discharge propagation involving chemistry and advection. The guidelines established in previous sections are applied to build the CNN to solve the same Poisson equation but in cylindrical coordinates. Results reveal good CNN predictions with significant speedup. These results pave the way to new computational strategies to predict unsteady problems involving a Poisson equation, including configurations with coupled multiphysics interactions such as in plasma flows.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

An adapted deflation preconditioner is employed to accelerate the solution of linear systems resulting from the discretization of fracture mechanics problems with well-conditioned extended/generalized finite elements. The deflation space typically used for linear elasticity problems is enriched with additional vectors, accounting for the enrichment functions used, thus effectively removing low frequency components of the error. To further improve performance, deflation is combined, in a multiplicative way, with a block-Jacobi preconditioner, which removes high frequency components of the error as well as linear dependencies introduced by enrichment. The resulting scheme is tested on a series of non-planar crack propagation problems and compared to alternative linear solvers in terms of performance.

This work presents a deep learning-based framework for the solution of partial differential equations on complex computational domains described with computer-aided design tools. To account for the underlying distribution of the training data caused by spline-based projections from the reference to the physical domain, a variational neural solver equipped with an importance sampling scheme is developed, such that the loss function based on the discretized energy functional obtained after the weak formulation is modified according to the sample distribution. To tackle multi-patch domains possibly leading to solution discontinuities, the variational neural solver is additionally combined with a domain decomposition approach based on the Discontinuous Galerkin formulation. The proposed neural solver is verified on a toy problem and then applied to a real-world engineering test case, namely that of electric machine simulation. The numerical results show clearly that the neural solver produces physics-conforming solutions of significantly improved accuracy.

Structure-preserving methods can be derived for the Vlasov-Maxwell system from a discretisation of the Poisson bracket with compatible finite-elements for the fields and a particle representation of the distribution function. These geometric electromagnetic particle-in-cell (GEMPIC) discretisations feature excellent conservation properties and long-time numerical stability. This paper extends the GEMPIC formulation in curvilinear coordinates to realistic boundary conditions. We build a de Rham sequence based on spline functions with clamped boundaries and apply perfect conductor boundary conditions for the fields and reflecting boundary conditions for the particles. The spatial semi-discretisation forms a discrete Poisson system. Time discretisation is either done by Hamiltonian splitting yielding a semi-explicit Gauss conserving scheme or by a discrete gradient scheme applied to a Poisson splitting yielding a semi-implicit energy-conserving scheme. Our system requires the inversion of the spline finite element mass matrices, which we precondition with the combination of a Jacobi preconditioner and the spectrum of the mass matrices on a periodic tensor product grid.

As one of the most important function in quantum networks, entanglement routing, i.e., how to efficiently establish remote entanglement connection between two arbitrary quantum nodes, becomes a critical problem that is worth to be studied. However, the entanglement fidelity, which can be regarded as the most important metric to evaluate the quality of connection, is rarely considered in existing works. Thus, in this paper, we propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (S-D) pairs in quantum networks. To find the routing path with minimum entangled pair cost, we first design an iterative routing algorithm for single S-D pair, called Q-PATH, to find the optimal solution. After that, due to the relatively high computational complexity, we also design a low-complexity routing algorithm by using an extended dijkstra algorithm, called Q-LEAP, to efficiently find the near-optimal solution. Based on these two algorithms, we design a utility metric to solve the resource allocation problem for multiple S-D pairs, and further design a greedy-based algorithm considering resource allocation and re-routing process for routing requests from multiple S-D pairs. To verify the effectiveness and superiority of the proposed algorithms, extensive simulations are conducted compared to the existing purification-enabled routing algorithm. The simulation results show that, compared with the traditional routing scheme, the proposed algorithms not only can provide fidelity-guaranteed routing solutions under various scenarios, but also has superior performance in terms of throughput, fidelity of end-to-end entanglement connection, and resource utilization ratio.

We trained deep neural networks (DNNs) as a function of the neutrino energy density, flux, and the fluid velocity to reproduce the Eddington tensor for neutrinos obtained in our first-principles core-collapse supernova (CCSN) simulations. Although the moment method, which is one of the most popular approximations for neutrino transport, requires a closure relation, none of the analytical closure relations commonly employed in the literature captures all aspects of the neutrino angular distribution in momentum space. In this paper, we developed a closure relation by using the DNN that takes the neutrino energy density, flux, and the fluid velocity as the input and the Eddington tensor as the output. We consider two kinds of DNNs: a conventional DNN named a component-wise neural network (CWNN) and a tensor-basis neural network (TBNN). We found that the diagonal component of the Eddington tensor is reproduced better by the DNNs than the M1-closure relation especially for low to intermediate energies. For the off-diagonal component, the DNNs agree better with the Boltzmann solver than the M1 closure at large radii. In the comparison between the two DNNs, the TBNN has slightly better performance than the CWNN. With the new closure relations at hand based on the DNNs that well reproduce the Eddington tensor with much smaller costs, we opened up a new possibility for the moment method.

In this paper, a time-periodic MGRIT algorithm is proposed as a means to reduce the time-to-solution of numerical algorithms by exploiting the time periodicity inherent to many applications in science and engineering. The time-periodic MGRIT algorithm is applied to a variety of linear and nonlinear single- and multiphysics problems that are periodic-in-time. It is demonstrated that the proposed parallel-in-time algorithm can obtain the same time-periodic steady-state solution as sequential time-stepping. It is shown that the required number of MGRIT iterations can be estimated a priori and that the new MGRIT variant can significantly and consistently reduce the time-to-solution compared to sequential time-stepping, irrespective of the number of dimensions, linear or nonlinear PDE models, single-physics or coupled problems and the employed computing resources. The numerical experiments demonstrate that the time-periodic MGRIT algorithm enables a greater level of parallelism yielding faster turnaround, and thus, facilitating more complex and more realistic problems to be solved.

Meshfree methods for in silico modelling and simulation of cardiac electrophysiology are gaining more and more popularity. These methods do not require a mesh and are more suitable than the Finite Element Method (FEM) to simulate the activity of complex geometrical structures like the human heart. However, challenges such as numerical integration accuracy and time efficiency remain and limit their applicability. Recently, the Fragile Points Method (FPM) has been introduced in the meshfree methods family. It uses local, simple, polynomial, discontinuous functions to construct trial and test functions in the Galerkin weak form. This allows for accurate integration and improved efficiency while enabling the imposition of essential and natural boundary conditions as in the FEM. In this work, we consider the application of FPM for cardiac electrophysiology simulation. We derive the cardiac monodomain model using the FPM formulation and we solve several benchmark problems in 2D and 3D. We show that FPM leads to solutions of similar accuracy and efficiency with FEM while alleviating the need for a mesh. Additionally, FPM demonstrates better convergence than FEM in the considered benchmarks.

This paper studies the expressive power of artificial neural networks (NNs) with rectified linear units. To study them as a model of real-valued computation, we introduce the concept of Max-Affine Arithmetic Programs and show equivalence between them and NNs concerning natural complexity measures. We then use this result to show that two fundamental combinatorial optimization problems can be solved with polynomial-size NNs, which is equivalent to the existence of very special strongly polynomial time algorithms. First, we show that for any undirected graph with $n$ nodes, there is an NN of size $\mathcal{O}(n^3)$ that takes the edge weights as input and computes the value of a minimum spanning tree of the graph. Second, we show that for any directed graph with $n$ nodes and $m$ arcs, there is an NN of size $\mathcal{O}(m^2n^2)$ that takes the arc capacities as input and computes a maximum flow. These results imply in particular that the solutions of the corresponding parametric optimization problems where all edge weights or arc capacities are free parameters can be encoded in polynomial space and evaluated in polynomial time, and that such an encoding is provided by an NN.

Recent literature established that neural networks can represent good policies across a range of stochastic dynamic models in supply chain and logistics. We propose a new algorithm that incorporates variance reduction techniques, to overcome limitations of algorithms typically employed in literature to learn such neural network policies. For the classical lost sales inventory model, the algorithm learns neural network policies that are vastly superior to those learned using model-free algorithms, while outperforming the best heuristic benchmarks by an order of magnitude. The algorithm is an interesting candidate to apply to other stochastic dynamic problems in supply chain and logistics, because the ideas in its development are generic.

In this article, we aim to study the stability and dynamic transition of an electrically conducting fluid in the presence of an external uniform horizontal magnetic field and rotation based on a Boussinesq approximation model. By analyzing the spectrum of the linear part of the model and verifying the validity of the principle of exchange of stability, we take a hybrid approach combining theoretical analysis with numerical computation to study the transition from a simple real eigenvalue, a pair of complex conjugate eigenvalues and a real eigenvalue of multiplicity two, respectively. The center manifold reduction theory is applied to reduce the infinite dimensional system to the corresponding finite dimensional one together with one or several non-dimensional transition numbers that determine the dynamic transition types. Careful numerical computations are performed to determine these transition numbers as well as related temporal and flow patterns etc. Our results indicate that both continuous and jump transitions can occur at certain parameter region.

北京阿比特科技有限公司