Heterogeneous Graphs (HGs) can effectively model complex relationships in the real world by multi-type nodes and edges. In recent years, inspired by self-supervised learning, contrastive Heterogeneous Graphs Neural Networks (HGNNs) have shown great potential by utilizing data augmentation and discriminators for downstream tasks. However, data augmentation is still limited due to the discrete and abstract nature of graphs. To tackle the above limitations, we propose a novel \textit{Generative-Contrastive Heterogeneous Graph Neural Network (GC-HGNN)}. Specifically, we first propose a heterogeneous graph generative learning enhanced contrastive paradigm. This paradigm includes: 1) A contrastive view augmentation strategy by using masked autoencoder. 2) Position-aware and semantics-aware positive sample sampling strategy for generate hard negative samples. 3) A hierarchical contrastive learning strategy for capturing local and global information. Furthermore, the hierarchical contrastive learning and sampling strategies aim to constitute an enhanced discriminator under the generative-contrastive perspective. Finally, we compare our model with seventeen baselines on eight real-world datasets. Our model outperforms the latest contrastive and generative baselines on node classification and link prediction tasks. To reproduce our work, we have open-sourced our code at //github.com/xxx.
The Internet of Things (IoT) necessitates robust access control mechanisms to secure a vast array of interconnected devices. Most of the existing IoT systems in practice use centralized solutions. We identify the problems in such solutions and adopt the blockchain based decentralized access control approach. Though there are works in the literature that use blockchain for access control, there are some gaps in these works. We develop a blockchain embedded access control (BEAC) framework to bridge the gaps. First, blockchain based solutions for access control require an enabling P2P network while existing P2P overlays do not support some required features. We develop a novel P2P infrastructure to seamlessly support our BEAC framework. Second, most of the works consider blockchain based access control for a single access control model, and we develop a generic blockchain mechanism and show that it can support the embedding of various access control models. Finally, existing works adopt existing blockchain mechanisms which may incur a high communication overhead. We develop a shortcut approach to improve the number of message rounds in the access protocol. Our experiments demonstrate the efficacy of our system, showing that the shortcut mechanism can reduces access time by approximately 43%.
Accuracy and computational efficiency are the most important metrics to Visual Inertial Navigation System (VINS). The existing VINS algorithms with either high accuracy or low computational complexity, are difficult to provide the high precision localization in resource-constrained devices. To this end, we propose a novel filter-based VINS framework named SchurVINS, which could guarantee both high accuracy by building a complete residual model and low computational complexity with Schur complement. Technically, we first formulate the full residual model where Gradient, Hessian and observation covariance are explicitly modeled. Then Schur complement is employed to decompose the full model into ego-motion residual model and landmark residual model. Finally, Extended Kalman Filter (EKF) update is implemented in these two models with high efficiency. Experiments on EuRoC and TUM-VI datasets show that our method notably outperforms state-of-the-art (SOTA) methods in both accuracy and computational complexity. The experimental code of SchurVINS is available at //github.com/bytedance/SchurVINS.
The study of behavioral diversity in Multi-Agent Reinforcement Learning (MARL) is a nascent yet promising field. In this context, the present work deals with the question of how to control the diversity of a multi-agent system. With no existing approaches to control diversity to a set value, current solutions focus on blindly promoting it via intrinsic rewards or additional loss functions, effectively changing the learning objective and lacking a principled measure for it. To address this, we introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric by representing policies as the sum of a parameter-shared component and dynamically scaled per-agent components. By applying constraints directly to the policy architecture, DiCo leaves the learning objective unchanged, enabling its applicability to any actor-critic MARL algorithm. We theoretically prove that DiCo achieves the desired diversity, and we provide several experiments, both in cooperative and competitive tasks, that show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in MARL. Multimedia results are available on the paper's website: //sites.google.com/view/dico-marl.
Traditional reinforcement learning from human feedback (RLHF) approaches relying on parametric models like the Bradley-Terry model fall short in capturing the intransitivity and irrationality in human preferences. Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences, enabling more flexible and accurate language model alignment. In this paper, we propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy. Our approach, dubbed \textit{Self-play Probabilistic Preference Optimization} (SPPO), approximates the Nash equilibrium through iterative policy updates and enjoys a theoretical convergence guarantee. Our method can effectively increase the log-likelihood of the chosen response and decrease that of the rejected response, which cannot be trivially achieved by symmetric pairwise loss such as Direct Preference Optimization (DPO) and Identity Preference Optimization (IPO). In our experiments, using only 60k prompts (without responses) from the UltraFeedback dataset and without any prompt augmentation, by leveraging a pre-trained preference model PairRM with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of 28.53\% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench and the Open LLM Leaderboard. Notably, the strong performance of SPPO is achieved without additional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language models.
Real world re-identfication (ReID) algorithms aim to map new observations of an object to previously recorded instances. These systems are often constrained by quantity and size of the stored embeddings. To combat this scaling problem, we attempt to shrink the size of these vectors by using a variety of compression techniques. In this paper, we benchmark quantization-aware-training along with three different dimension reduction methods: iterative structured pruning, slicing the embeddings at initialize, and using low rank embeddings. We find that ReID embeddings can be compressed by up to 96x with minimal drop in performance. This implies that modern re-identification paradigms do not fully leverage the high dimensional latent space, opening up further research to increase the capabilities of these systems.
Linear Mode Connectivity (LMC) refers to the phenomenon that performance remains consistent for linearly interpolated models in the parameter space. For independently optimized model pairs from different random initializations, achieving LMC is considered crucial for validating the stable success of the non-convex optimization in modern machine learning models and for facilitating practical parameter-based operations such as model merging. While LMC has been achieved for neural networks by considering the permutation invariance of neurons in each hidden layer, its attainment for other models remains an open question. In this paper, we first achieve LMC for soft tree ensembles, which are tree-based differentiable models extensively used in practice. We show the necessity of incorporating two invariances: subtree flip invariance and splitting order invariance, which do not exist in neural networks but are inherent to tree architectures, in addition to permutation invariance of trees. Moreover, we demonstrate that it is even possible to exclude such additional invariances while keeping LMC by designing decision list-based tree architectures, where such invariances do not exist by definition. Our findings indicate the significance of accounting for architecture-specific invariances in achieving LMC.
Traditional offline reinforcement learning methods predominantly operate in a batch-constrained setting. This confines the algorithms to a specific state-action distribution present in the dataset, reducing the effects of distributional shift but restricting the algorithm greatly. In this paper, we alleviate this limitation by introducing a novel framework named \emph{state-constrained} offline reinforcement learning. By exclusively focusing on the dataset's state distribution, our framework significantly enhances learning potential and reduces previous limitations. The proposed setting not only broadens the learning horizon but also improves the ability to combine different trajectories from the dataset effectively, a desirable property inherent in offline reinforcement learning. Our research is underpinned by solid theoretical findings that pave the way for subsequent advancements in this domain. Additionally, we introduce StaCQ, a deep learning algorithm that is both performance-driven on the D4RL benchmark datasets and closely aligned with our theoretical propositions. StaCQ establishes a strong baseline for forthcoming explorations in state-constrained offline reinforcement learning.
Gaussian Process Regression (GPR) is widely used in statistics and machine learning for prediction tasks requiring uncertainty measures. Its efficacy depends on the appropriate specification of the mean function, covariance kernel function, and associated hyperparameters. Severe misspecifications can lead to inaccurate results and problematic consequences, especially in safety-critical applications. However, a systematic approach to handle these misspecifications is lacking in the literature. In this work, we propose a general framework to address these issues. Firstly, we introduce a flexible two-stage GPR framework that separates mean prediction and uncertainty quantification (UQ) to prevent mean misspecification, which can introduce bias into the model. Secondly, kernel function misspecification is addressed through a novel automatic kernel search algorithm, supported by theoretical analysis, that selects the optimal kernel from a candidate set. Additionally, we propose a subsampling-based warm-start strategy for hyperparameter initialization to improve efficiency and avoid hyperparameter misspecification. With much lower computational cost, our subsampling-based strategy can yield competitive or better performance than training exclusively on the full dataset. Combining all these components, we recommend two GPR methods-exact and scalable-designed to match available computational resources and specific UQ requirements. Extensive evaluation on real-world datasets, including UCI benchmarks and a safety-critical medical case study, demonstrates the robustness and precision of our methods.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.