亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While communication research frequently studies latent message features like moral appeals, their quantification remains a challenge. Conventional human coding struggles with scalability and intercoder reliability. While dictionary-based methods are cost-effective and computationally efficient, they often lack contextual sensitivity and are limited by the vocabularies developed for the original applications. In this paper, we present a novel approach to construct vec-tionary measurement tools that boost validated dictionaries with word embeddings through nonlinear optimization. By harnessing semantic relationships encoded by embeddings, vec-tionaries improve the measurement of latent message features by expanding the applicability of original vocabularies to other contexts. Vec-tionaries can also help extract semantic information from texts, especially those in short format, beyond the original vocabulary of a dictionary. Importantly, a vec-tionary can produce additional metrics to capture the valence and ambivalence of a latent feature beyond its strength in texts. Using moral appeals in COVID-19-related tweets as a case study, we illustrate the steps to construct the moral foundations vec-tionary, showcasing its ability to process posts missed by dictionary methods and to produce measurements better aligned with crowdsourced human assessments. Furthermore, additional metrics from the moral foundations vec-tionary unveiled unique insights that facilitated predicting outcomes such as message retransmission.

相關內容

Recent approaches to automatically detect the speaker of an utterance of direct speech often disregard general information about characters in favor of local information found in the context, such as surrounding mentions of entities. In this work, we explore stylistic representations of characters built by encoding their quotes with off-the-shelf pretrained Authorship Verification models in a large corpus of English novels (the Project Dialogism Novel Corpus). Results suggest that the combination of stylistic and topical information captured in some of these models accurately distinguish characters among each other, but does not necessarily improve over semantic-only models when attributing quotes. However, these results vary across novels and more investigation of stylometric models particularly tailored for literary texts and the study of characters should be conducted.

The analysis of brain signals holds considerable importance in enhancing our comprehension of diverse learning techniques and cognitive mechanisms. Game-based learning is increasingly being recognized for its interactive and engaging educational approach. A pilot study of twelve participants divided into experimental and control groups was conducted to understand its effects on cognitive processes. Both groups were provided with the same contents regarding the basic structure of the graph. The participants in the experimental group engaged in a quiz-based game, while those in the control group watched a pre-recorded video. Functional Near-Infrared Spectroscopy (fNIRS) was employed to acquire cerebral signals, and a series of pre and post-tests were administered. The findings of our study indicate that the group engaged in the game activity displayed elevated levels of oxygenated hemoglobin compared to the group involved in watching videos. Conversely, the deoxygenated hemoglobin levels remained relatively consistent across both groups throughout the learning process. The aforementioned findings suggest that the use of game-based learning has a substantial influence on cognitive processes. Furthermore, it is evident that both the game and video groups exhibited higher neural activity in the Lateral Prefrontal cortex (PFC). The oxygenated hemoglobin ratio demonstrates that the game group had 2.33 times more neural processing in the Lateral PFC than the video group. This data is further supported by the knowledge gain analysis, which indicates that the game-based approach resulted in a 47.74% higher knowledge gain than the video group, as calculated from the difference in pre-and post-test scores.

Large language models have demonstrated remarkable potential in various tasks, however, there remains a significant scarcity of open-source models and data for specific domains. Previous works have primarily focused on manually specifying resources and collecting high-quality data on specific domains, which significantly consume time and effort. To address this limitation, we propose an efficient data collection method~\textit{Query of CC} based on large language models. This method bootstraps seed information through a large language model and retrieves related data from public corpora. It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures. Through the application of this method, we have curated a high-quality dataset called~\textsc{Knowledge Pile}, encompassing four major domains, including stem and humanities sciences, among others. Experimental results demonstrate that~\textsc{Knowledge Pile} significantly improves the performance of large language models in mathematical and knowledge-related reasoning ability tests. To facilitate academic sharing, we open-source our dataset and code, providing valuable support to the academic community.

Learning accurate, data-driven predictive models for multiple interacting agents following unknown dynamics is crucial in many real-world physical and social systems. In many scenarios, dynamics prediction must be performed under incomplete observations, i.e., only a subset of agents are known and observable from a larger topological system while the behaviors of the unobserved agents and their interactions with the observed agents are not known. When only incomplete observations of a dynamical system are available, so that some states remain hidden, it is generally not possible to learn a closed-form model in these variables using either analytic or data-driven techniques. In this work, we propose STEMFold, a spatiotemporal attention-based generative model, to learn a stochastic manifold to predict the underlying unmeasured dynamics of the multi-agent system from observations of only visible agents. Our analytical results motivate STEMFold design using a spatiotemporal graph with time anchors to effectively map the observations of visible agents to a stochastic manifold with no prior information about interaction graph topology. We empirically evaluated our method on two simulations and two real-world datasets, where it outperformed existing networks in predicting complex multiagent interactions, even with many unobserved agents.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司