In this study, we introduce a new family of capsule networks, deformable capsules (DeformCaps), to address a very important problem in computer vision: object detection. We propose two new algorithms associated with our DeformCaps: a novel capsule structure (SplitCaps), and a novel dynamic routing algorithm (SE-Routing), which balance computational efficiency with the need for modeling a large number of objects and classes, which have never been achieved with capsule networks before. We demonstrate that the proposed methods allow capsules to efficiently scale-up to large-scale computer vision tasks for the first time, and create the first-ever capsule network for object detection in the literature. Our proposed architecture is a one-stage detection framework and obtains results on MS COCO which are on-par with state-of-the-art one-stage CNN-based methods, while producing fewer false positive detections, generalizing to unusual poses/viewpoints of objects.
We tackle a new task of few-shot object counting and detection. Given a few exemplar bounding boxes of a target object class, we seek to count and detect all objects of the target class. This task shares the same supervision as the few-shot object counting but additionally outputs the object bounding boxes along with the total object count. To address this challenging problem, we introduce a novel two-stage training strategy and a novel uncertainty-aware few-shot object detector: Counting-DETR. The former is aimed at generating pseudo ground-truth bounding boxes to train the latter. The latter leverages the pseudo ground-truth provided by the former but takes the necessary steps to account for the imperfection of pseudo ground-truth. To validate the performance of our method on the new task, we introduce two new datasets named FSCD-147 and FSCD-LVIS. Both datasets contain images with complex scenes, multiple object classes per image, and a huge variation in object shapes, sizes, and appearance. Our proposed approach outperforms very strong baselines adapted from few-shot object counting and few-shot object detection with a large margin in both counting and detection metrics. The code and models are available at \url{//github.com/VinAIResearch/Counting-DETR}.
Traffic sign detection is a vital task in the visual system of self-driving cars and the automated driving system. Recently, novel Transformer-based models have achieved encouraging results for various computer vision tasks. We still observed that vanilla ViT could not yield satisfactory results in traffic sign detection because the overall size of the datasets is very small and the class distribution of traffic signs is extremely unbalanced. To overcome this problem, a novel Pyramid Transformer with locality mechanisms is proposed in this paper. Specifically, Pyramid Transformer has several spatial pyramid reduction layers to shrink and embed the input image into tokens with rich multi-scale context by using atrous convolutions. Moreover, it inherits an intrinsic scale invariance inductive bias and is able to learn local feature representation for objects at various scales, thereby enhancing the network robustness against the size discrepancy of traffic signs. The experiments are conducted on the German Traffic Sign Detection Benchmark (GTSDB). The results demonstrate the superiority of the proposed model in the traffic sign detection tasks. More specifically, Pyramid Transformer achieves 77.8% mAP on GTSDB when applied to the Cascade RCNN as the backbone, which surpasses most well-known and widely-used state-of-the-art models.
The perceptive models of autonomous driving require fast inference within a low latency for safety. While existing works ignore the inevitable environmental changes after processing, streaming perception jointly evaluates the latency and accuracy into a single metric for video online perception, guiding the previous works to search trade-offs between accuracy and speed. In this paper, we explore the performance of real time models on this metric and endow the models with the capacity of predicting the future, significantly improving the results for streaming perception. Specifically, we build a simple framework with two effective modules. One is a Dual Flow Perception module (DFP). It consists of dynamic flow and static flow in parallel to capture moving tendency and basic detection feature, respectively. Trend Aware Loss (TAL) is the other module which adaptively generates loss weight for each object with its moving speed. Realistically, we consider multiple velocities driving scene and further propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy. In this realistic setting, we design a efficient mix-velocity training strategy to guide detector perceive any velocities. Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively compared to the strong baseline, validating its effectiveness.
Wireless Capsule Endoscopy is one of the most advanced non-invasive methods for the examination of gastrointestinal tracts. An intelligent computer-aided diagnostic system for detecting gastrointestinal abnormalities like polyp, bleeding, inflammation, etc. is highly exigent in wireless capsule endoscopy image analysis. Abnormalities greatly differ in their shape, size, color, and texture, and some appear to be visually similar to normal regions. This poses a challenge in designing a binary classifier due to intra-class variations. In this study, a hybrid convolutional neural network is proposed for abnormality detection that extracts a rich pool of meaningful features from wireless capsule endoscopy images using a variety of convolution operations. It consists of three parallel convolutional neural networks, each with a distinctive feature learning capability. The first network utilizes depthwise separable convolution, while the second employs cosine normalized convolution operation. A novel meta-feature extraction mechanism is introduced in the third network, to extract patterns from the statistical information drawn over the features generated from the first and second networks and its own previous layer. The network trio effectively handles intra-class variance and efficiently detects gastrointestinal abnormalities. The proposed hybrid convolutional neural network model is trained and tested on two widely used publicly available datasets. The test results demonstrate that the proposed model outperforms six state-of-the-art methods with 97\% and 98\% classification accuracy on KID and Kvasir-Capsule datasets respectively. Cross dataset evaluation results also demonstrate the generalization performance of the proposed model.
Accurate and reliable lane detection is vital for the safe performance of lane-keeping assistance and lane departure warning systems. However, under certain challenging circumstances, it is difficult to get satisfactory performance in accurately detecting the lanes from one single image as mostly done in current literature. Since lane markings are continuous lines, the lanes that are difficult to be accurately detected in the current single image can potentially be better deduced if information from previous frames is incorporated. This study proposes a novel hybrid spatial-temporal (ST) sequence-to-one deep learning architecture. This architecture makes full use of the ST information in multiple continuous image frames to detect the lane markings in the very last frame. Specifically, the hybrid model integrates the following aspects: (a) the single image feature extraction module equipped with the spatial convolutional neural network; (b) the ST feature integration module constructed by ST recurrent neural network; (c) the encoder-decoder structure, which makes this image segmentation problem work in an end-to-end supervised learning format. Extensive experiments reveal that the proposed model architecture can effectively handle challenging driving scenes and outperforms available state-of-the-art methods.
This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.