亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We identify a family of $O(|E(G)|^2)$ nontrivial facets of the connected matching polytope of a graph $G$, that is, the convex hull of incidence vectors of matchings in $G$ whose covered vertices induce a connected subgraph. Accompanying software to further inspect the polytope of an input graph is available.

相關內容

The problem of recovering a moment-determinate multivariate function $f$ via its moment sequence is studied. Under mild conditions on $f$, the point-wise and $L_1$-rates of convergence for the proposed constructions are established. The cases where $f$ is the indicator function of a set, and represents a discrete probability mass function are also investigated. Calculations of the approximants and simulation studies are conducted to graphically illustrate the behavior of the approximations in several simple examples. Analytical and simulated errors of proposed approximations are recorded in Tables 1-3.

The Riesz maps of the $L^2$ de Rham complex frequently arise as subproblems in the construction of fast preconditioners for more complicated problems. In this work we present multigrid solvers for high-order finite element discretizations of these Riesz maps with the same time and space complexity as sum-factorized operator application, i.e.~with optimal complexity in polynomial degree in the context of Krylov methods. The key idea of our approach is to build new finite elements for each space in the de Rham complex with orthogonality properties in both the $L^2$- and $H(\mathrm{d})$-inner products ($\mathrm{d} \in \{\mathrm{grad}, \mathrm{curl}, \mathrm{div}\})$ on the reference hexahedron. The resulting sparsity enables the fast solution of the patch problems arising in the Pavarino, Arnold--Falk--Winther and Hiptmair space decompositions, in the separable case. In the non-separable case, the method can be applied to an auxiliary operator that is sparse by construction. With exact Cholesky factorizations of the sparse patch problems, the application complexity is optimal but the setup costs and storage are not. We overcome this with the finer Hiptmair space decomposition and the use of incomplete Cholesky factorizations imposing the sparsity pattern arising from static condensation, which applies whether static condensation is used for the solver or not. This yields multigrid relaxations with time and space complexity that are both optimal in the polynomial degree.

We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results, and a couple of applications in view of bifurcation analysis.

Neufeld and Wu (arXiv:2310.12545) developed a multilevel Picard (MLP) algorithm which can approximately solve general semilinear parabolic PDEs with gradient-dependent nonlinearities, allowing also for coefficient functions of the corresponding PDE to be non-constant. By introducing a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula and identifying the first and second component of the unique fixed-point of the SFPE with the unique viscosity solution of the PDE and its gradient, they proved convergence of their algorithm. However, it remained an open question whether the proposed MLP schema in arXiv:2310.12545 does not suffer from the curse of dimensionality. In this paper, we prove that the MLP algorithm in arXiv:2310.12545 indeed can overcome the curse of dimensionality, i.e. that its computational complexity only grows polynomially in the dimension $d\in \mathbb{N}$ and the reciprocal of the accuracy $\varepsilon$, under some suitable assumptions on the nonlinear part of the corresponding PDE.

We classify the {\it Boolean degree $1$ functions} of $k$-spaces in a vector space of dimension $n$ (also known as {\it Cameron-Liebler classes}) over the field with $q$ elements for $n \geq n_0(k, q)$, a problem going back to a work by Cameron and Liebler from 1982. This also implies that two-intersecting sets with respect to $k$-spaces do not exist for $n \geq n_0(k, q)$. Our main ingredient is the Ramsey theory for geometric lattices.

We show that a canonical labeling of a random $n$-vertex graph can be obtained by assigning to each vertex $x$ the triple $(w_1(x),w_2(x),w_3(x))$, where $w_k(x)$ is the number of walks of length $k$ starting from $x$. This takes time $O(n^2)$, where $n^2$ is the input size, by using just two matrix-vector multiplications. The linear-time canonization of a random graph is the classical result of Babai, Erd\H{o}s, and Selkow. For this purpose they use the well-known combinatorial color refinement procedure, and we make a comparative analysis of the two algorithmic approaches.

We present a rigorous and precise analysis of the maximum degree and the average degree in a dynamic duplication-divergence graph model introduced by Sol\'e, Pastor-Satorras et al. in which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating a copy of some node and then randomly alternating the neighborhood of a new node with probability $p$. This model captures the growth of some real-world processes e.g. biological or social networks. In this paper, we prove that for some $0 < p < 1$ the maximum degree and the average degree of a duplication-divergence graph on $t$ vertices are asymptotically concentrated with high probability around $t^p$ and $\max\{t^{2 p - 1}, 1\}$, respectively, i.e. they are within at most a polylogarithmic factor from these values with probability at least $1 - t^{-A}$ for any constant $A > 0$.

Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.

We study the stability and sensitivity of an absorbing layer for the Boltzmann equation by examining the Bhatnagar-Gross-Krook (BGK) approximation and using the perfectly matched layer (PML) technique. To ensure stability, we discard some parameters in the model and calculate the total sensitivity indices of the remaining parameters using the ANOVA expansion of multivariate functions. We conduct extensive numerical experiments to study stability and compute the total sensitivity indices, which allow us to identify the essential parameters of the model.

The maximum likelihood threshold (MLT) of a graph $G$ is the minimum number of samples to almost surely guarantee existence of the maximum likelihood estimate in the corresponding Gaussian graphical model. We give a new characterization of the MLT in terms of rigidity-theoretic properties of $G$ and use this characterization to give new combinatorial lower bounds on the MLT of any graph. We use the new lower bounds to give high-probability guarantees on the maximum likelihood thresholds of sparse Erd{\"o}s-R\'enyi random graphs in terms of their average density. These examples show that the new lower bounds are within a polylog factor of tight, where, on the same graph families, all known lower bounds are trivial. Based on computational experiments made possible by our methods, we conjecture that the MLT of an Erd{\"o}s-R\'enyi random graph is equal to its generic completion rank with high probability. Using structural results on rigid graphs in low dimension, we can prove the conjecture for graphs with MLT at most $4$ and describe the threshold probability for the MLT to switch from $3$ to $4$. We also give a geometric characterization of the MLT of a graph in terms of a new "lifting" problem for frameworks that is interesting in its own right. The lifting perspective yields a new connection between the weak MLT (where the maximum likelihood estimate exists only with positive probability) and the classical Hadwiger-Nelson problem.

北京阿比特科技有限公司