亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spiking Neural Networks, as a third-generation neural network, are well-suited for edge AI applications due to their binary spike nature. However, when it comes to complex tasks like object detection, SNNs often require a substantial number of time steps to achieve high performance. This limitation significantly hampers the widespread adoption of SNNs in latency-sensitive edge devices. In this paper, our focus is on generating highly accurate and low-latency SNNs specifically for object detection. Firstly, we systematically derive the conversion between SNNs and ANNs and analyze how to improve the consistency between them: improving the spike firing rate and reducing the quantization error. Then we propose a structural replacement, quantization of ANN activation and residual fix to allevicate the disparity. We evaluate our method on challenging dataset MS COCO, PASCAL VOC and our spike dataset. The experimental results show that the proposed method achieves higher accuracy and lower latency compared to previous work Spiking-YOLO. The advantages of SNNs processing of spike signals are also demonstrated.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

We introduce SPUD (Semantically Perturbed Universal Dependencies), a framework for creating nonce treebanks for the multilingual Universal Dependencies (UD) corpora. SPUD data satisfies syntactic argument structure, provides syntactic annotations, and ensures grammaticality via language-specific rules. We create nonce data in Arabic, English, French, German, and Russian, and demonstrate two use cases of SPUD treebanks. First, we investigate the effect of nonce data on word co-occurrence statistics, as measured by perplexity scores of autoregressive (ALM) and masked language models (MLM). We find that ALM scores are significantly more affected by nonce data than MLM scores. Second, we show how nonce data affects the performance of syntactic dependency probes. We replicate the findings of M\"uller-Eberstein et al. (2022) on nonce test data and show that the performance declines on both MLMs and ALMs wrt. original test data. However, a majority of the performance is kept, suggesting that the probe indeed learns syntax independently from semantics.

We consider two applications where we study how dependence structure between many variables is linked to external network data. We first study the interplay between social media connectedness and the co-evolution of the COVID-19 pandemic across USA counties. We next study study how the dependence between stock market returns across firms relates to similarities in economic and policy indicators from text regulatory filings. Both applications are modelled via Gaussian graphical models where one has external network data. We develop spike-and-slab and graphical LASSO frameworks to integrate the network data, both facilitating the interpretation of the graphical model and improving inference. The goal is to detect when the network data relates to the graphical model and, if so, explain how. We found that counties strongly connected on Facebook are more likely to have similar COVID-19 evolution (positive partial correlations), accounting for various factors driving the mean. We also found that the association in stock market returns depends in a stronger fashion on economic than on policy indicators. The examples show that data integration can improve interpretation, statistical accuracy, and out-of-sample prediction, in some instances using significantly sparser graphical models.

For the differential privacy under the sub-Gamma noise, we derive the asymptotic properties of a class of network models with binary values with a general link function. In this paper, we release the degree sequences of the binary networks under a general noisy mechanism with the discrete Laplace mechanism as a special case. We establish the asymptotic result including both consistency and asymptotically normality of the parameter estimator when the number of parameters goes to infinity in a class of network models. Simulations and a real data example are provided to illustrate asymptotic results.

The reduction of Hamiltonian systems aims to build smaller reduced models, valid over a certain range of time and parameters, in order to reduce computing time. By maintaining the Hamiltonian structure in the reduced model, certain long-term stability properties can be preserved. In this paper, we propose a non-linear reduction method for models coming from the spatial discretization of partial differential equations: it is based on convolutional auto-encoders and Hamiltonian neural networks. Their training is coupled in order to simultaneously learn the encoder-decoder operators and the reduced dynamics. Several test cases on non-linear wave dynamics show that the method has better reduction properties than standard linear Hamiltonian reduction methods.

Cloud-RAN is a recent architecture for mobile networks where the processing units are located in distant data centers while, until now, they were attached to antennas. The main challenge, to fulfill protocol constraints, is to guarantee low latency for the periodic messages sent from each antenna to its processing unit and back. The problem we address is to find a periodic sending scheme of these messages \emph{without contention nor buffering}, when all messages are of the same size and the period is fixed. We study the periodic message assignment problem modeling this situation on a common topology, where contention arises from a single link shared by all antennas. The problem is reminiscent of coupled-task scheduling, but the periodicity introduces a new twist. We study how the problem behaves with regard to the \emph{load} of the shared link. The main contributions are polynomial-time algorithms which \emph{always} find a solution for an arbitrary size of messages and load at most $2/5$ or for messages of size one and load at most $\phi - 1$, the golden ratio conjugate. We also prove that a randomized greedy algorithm finds a solution on almost all instances with high probability, explaining why most greedy algorithms work so well in practice.

It is well known that artificial neural networks initialized from independent and identically distributed priors converge to Gaussian processes in the limit of large number of neurons per hidden layer. In this work we prove an analogous result for Quantum Neural Networks (QNNs). Namely, we show that the outputs of certain models based on Haar random unitary or orthogonal deep QNNs converge to Gaussian processes in the limit of large Hilbert space dimension $d$. The derivation of this result is more nuanced than in the classical case due to the role played by the input states, the measurement observable, and the fact that the entries of unitary matrices are not independent. An important consequence of our analysis is that the ensuing Gaussian processes cannot be used to efficiently predict the outputs of the QNN via Bayesian statistics. Furthermore, our theorems imply that the concentration of measure phenomenon in Haar random QNNs is worse than previously thought, as we prove that expectation values and gradients concentrate as $\mathcal{O}\left(\frac{1}{e^d \sqrt{d}}\right)$. Finally, we discuss how our results improve our understanding of concentration in $t$-designs.

Large Language Models (LLMs) are huge artificial neural networks which primarily serve to generate text, but also provide a very sophisticated probabilistic model of language use. Since generating a semantically consistent text requires a form of effective memory, we investigate the memory properties of LLMs and find surprising similarities with key characteristics of human memory. We argue that the human-like memory properties of the Large Language Model do not follow automatically from the LLM architecture but are rather learned from the statistics of the training textual data. These results strongly suggest that the biological features of human memory leave an imprint on the way that we structure our textual narratives.

Bayesian inference and kernel methods are well established in machine learning. The neural network Gaussian process in particular provides a concept to investigate neural networks in the limit of infinitely wide hidden layers by using kernel and inference methods. Here we build upon this limit and provide a field-theoretic formalism which covers the generalization properties of infinitely wide networks. We systematically compute generalization properties of linear, non-linear, and deep non-linear networks for kernel matrices with heterogeneous entries. In contrast to currently employed spectral methods we derive the generalization properties from the statistical properties of the input, elucidating the interplay of input dimensionality, size of the training data set, and variability of the data. We show that data variability leads to a non-Gaussian action reminiscent of a ($\varphi^3+\varphi^4$)-theory. Using our formalism on a synthetic task and on MNIST we obtain a homogeneous kernel matrix approximation for the learning curve as well as corrections due to data variability which allow the estimation of the generalization properties and exact results for the bounds of the learning curves in the case of infinitely many training data points.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司