亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider two applications where we study how dependence structure between many variables is linked to external network data. We first study the interplay between social media connectedness and the co-evolution of the COVID-19 pandemic across USA counties. We next study study how the dependence between stock market returns across firms relates to similarities in economic and policy indicators from text regulatory filings. Both applications are modelled via Gaussian graphical models where one has external network data. We develop spike-and-slab and graphical LASSO frameworks to integrate the network data, both facilitating the interpretation of the graphical model and improving inference. The goal is to detect when the network data relates to the graphical model and, if so, explain how. We found that counties strongly connected on Facebook are more likely to have similar COVID-19 evolution (positive partial correlations), accounting for various factors driving the mean. We also found that the association in stock market returns depends in a stronger fashion on economic than on policy indicators. The examples show that data integration can improve interpretation, statistical accuracy, and out-of-sample prediction, in some instances using significantly sparser graphical models.

相關內容

《圖形模型》是國際公認的高評價的頂級期刊,專注于圖形模型的創建、幾何處理、動畫和可視化,以及它們在工程、科學、文化和娛樂方面的應用。GMOD為其讀者提供了經過徹底審查和精心挑選的論文,這些論文傳播令人興奮的創新,傳授嚴謹的理論基礎,提出健壯和有效的解決方案,或描述各種主題中的雄心勃勃的系統或應用程序。 官網地址:

In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license at //github.com/cvanaret/CateGOrical.jl

By conceiving physical systems as 3D many-body point clouds, geometric graph neural networks (GNNs), such as SE(3)/E(3) equivalent GNNs, have showcased promising performance. In particular, their effective message-passing mechanics make them adept at modeling molecules and crystalline materials. However, current geometric GNNs only offer a mean-field approximation of the many-body system, encapsulated within two-body message passing, thus falling short in capturing intricate relationships within these geometric graphs. To address this limitation, tensor networks, widely employed by computational physics to handle manybody systems using high-order tensors, have been introduced. Nevertheless, integrating these tensorized networks into the message-passing framework of GNNs faces scalability and symmetry conservation (e.g., permutation and rotation) challenges. In response, we introduce an innovative equivariant Matrix Product State (MPS)-based message-passing strategy, through achieving an efficient implementation of the tensor contraction operation. Our method effectively models complex many-body relationships, suppressing mean-field approximations, and captures symmetries within geometric graphs. Importantly, it seamlessly replaces the standard message-passing and layer-aggregation modules intrinsic to geometric GNNs. We empirically validate the superior accuracy of our approach on benchmark tasks, including predicting classical Newton systems and quantum tensor Hamiltonian matrices. To our knowledge, our approach represents the inaugural utilization of parameterized geometric tensor networks.

Residual connections have been proposed as an architecture-based inductive bias to mitigate the problem of exploding and vanishing gradients and increased task performance in both feed-forward and recurrent networks (RNNs) when trained with the backpropagation algorithm. Yet, little is known about how residual connections in RNNs influence their dynamics and fading memory properties. Here, we introduce weakly coupled residual recurrent networks (WCRNNs) in which residual connections result in well-defined Lyapunov exponents and allow for studying properties of fading memory. We investigate how the residual connections of WCRNNs influence their performance, network dynamics, and memory properties on a set of benchmark tasks. We show that several distinct forms of residual connections yield effective inductive biases that result in increased network expressivity. In particular, those are residual connections that (i) result in network dynamics at the proximity of the edge of chaos, (ii) allow networks to capitalize on characteristic spectral properties of the data, and (iii) result in heterogeneous memory properties. In addition, we demonstrate how our results can be extended to non-linear residuals and introduce a weakly coupled residual initialization scheme that can be used for Elman RNNs.

Defining a successful notion of a multivariate quantile has been an open problem for more than half a century, motivating a plethora of possible solutions. Of these, the approach of [8] and [25] leading to M-quantiles, is very appealing for its mathematical elegance combining elements of convex analysis and probability theory. The key idea is the description of a convex function (the K-function) whose gradient (the K-transform) is in one-to-one correspondence between all of R^d and the unit ball in R^d. By analogy with the d=1 case where the K-transform is a cumulative distribution function-like object (an M-distribution), the fact that its inverse is guaranteed to exist lends itself naturally to providing the basis for the definition of a quantile function for all d>=1. Over the past twenty years the resulting M-quantiles have seen applications in a variety of fields, primarily for the purpose of detecting outliers in multidimensional spaces. In this article we prove that for odd d>=3, it is not the gradient but a poly-Laplacian of the K-function that is (almost everywhere) proportional to the density function. For d even one cannot establish a differential equation connecting the K-function with the density. These results show that usage of the K-transform for outlier detection in higher odd-dimensions is in principle flawed, as the K-transform does not originate from inversion of a true M-distribution. We demonstrate these conclusions in two dimensions through examples from non-standard asymmetric distributions. Our examples illustrate a feature of the K-transform whereby regions in the domain with higher density map to larger volumes in the co-domain, thereby producing a magnification effect that moves inliers closer to the boundary of the co-domain than outliers. This feature obviously disrupts any outlier detection mechanism that relies on the inverse K-transform.

After introducing a bit-plane quantum representation for a multi-image, we present a novel way to encrypt/decrypt multiple images using a quantum computer. Our encryption scheme is based on a two-stage scrambling of the images and of the bit planes on one hand and of the pixel positions on the other hand, each time using quantum baker maps. The resulting quantum multi-image is then diffused with controlled CNOT gates using a sine chaotification of a two-dimensional H\'enon map as well as Chebyshev polynomials. The decryption is processed by operating all the inverse quantum gates in the reverse order.

The structure of a network has a major effect on dynamical processes on that network. Many studies of the interplay between network structure and dynamics have focused on models of phenomena such as disease spread, opinion formation and changes, coupled oscillators, and random walks. In parallel to these developments, there have been many studies of wave propagation and other spatially extended processes on networks. These latter studies consider metric networks, in which the edges are associated with real intervals. Metric networks give a mathematical framework to describe dynamical processes that include both temporal and spatial evolution of some quantity of interest -- such as the concentration of a diffusing substance or the amplitude of a wave -- by using edge-specific intervals that quantify distance information between nodes. Dynamical processes on metric networks often take the form of partial differential equations (PDEs). In this paper, we present a collection of techniques and paradigmatic linear PDEs that are useful to investigate the interplay between structure and dynamics in metric networks. We start by considering a time-independent Schr\"odinger equation. We then use both finite-difference and spectral approaches to study the Poisson, heat, and wave equations as paradigmatic examples of elliptic, parabolic, and hyperbolic PDE problems on metric networks. Our spectral approach is able to account for degenerate eigenmodes. In our numerical experiments, we consider metric networks with up to about $10^4$ nodes and about $10^4$ edges. A key contribution of our paper is to increase the accessibility of studying PDEs on metric networks. Software that implements our numerical approaches is available at //gitlab.com/ComputationalScience/metric-networks.

We define positive and strictly positive definite functions on a domain and study these functions on a list of regular domains. The list includes the unit ball, conic surface, hyperbolic surface, solid hyperboloid, and simplex. Each of these domains is embedded in a quadrant or a union of quadrants of the unit sphere by a distance preserving map, from which characterizations of positive definite and strictly positive definite functions are derived for these regular domains.

Multiscale stochastic dynamical systems have been widely adopted to a variety of scientific and engineering problems due to their capability of depicting complex phenomena in many real world applications. This work is devoted to investigating the effective dynamics for slow-fast stochastic dynamical systems. Given observation data on a short-term period satisfying some unknown slow-fast stochastic systems, we propose a novel algorithm including a neural network called Auto-SDE to learn invariant slow manifold. Our approach captures the evolutionary nature of a series of time-dependent autoencoder neural networks with the loss constructed from a discretized stochastic differential equation. Our algorithm is also validated to be accurate, stable and effective through numerical experiments under various evaluation metrics.

Detecting early warning indicators for abrupt dynamical transitions in complex systems or high-dimensional observation data is essential in many real-world applications, such as brain diseases, natural disasters, financial crises, and engineering reliability. To this end, we develop a novel approach: the directed anisotropic diffusion map that captures the latent evolutionary dynamics in the low-dimensional manifold. Then three effective warning signals (Onsager-Machlup Indicator, Sample Entropy Indicator, and Transition Probability Indicator) are derived through the latent coordinates and the latent stochastic dynamical systems. To validate our framework, we apply this methodology to authentic electroencephalogram (EEG) data. We find that our early warning indicators are capable of detecting the tipping point during state transition. This framework not only bridges the latent dynamics with real-world data but also shows the potential ability for automatic labeling on complex high-dimensional time series.

This study proposes a unified optimization-based planning framework that addresses the precise and efficient navigation of a controlled object within a constrained region, while contending with obstacles. We focus on handling two collision avoidance problems, i.e., the object not colliding with obstacles and not colliding with boundaries of the constrained region. The object or obstacle is denoted as a union of convex polytopes and ellipsoids, and the constrained region is denoted as an intersection of such convex sets. Using these representations, collision avoidance can be approached by formulating explicit constraints that separate two convex sets, or ensure that a convex set is contained in another convex set, referred to as separating constraints and containing constraints, respectively. We propose to use the hyperplane separation theorem to formulate differentiable separating constraints, and utilize the S-procedure and geometrical methods to formulate smooth containing constraints. We state that compared to the state of the art, the proposed formulations allow a considerable reduction in nonlinear program size and geometry-based initialization in auxiliary variables used to formulate collision avoidance constraints. Finally, the efficacy of the proposed unified planning framework is evaluated in two contexts, autonomous parking in tractor-trailer vehicles and overtaking on curved lanes. The results in both cases exhibit an improved computational performance compared to existing methods.

北京阿比特科技有限公司