亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The emerging trend of AR/VR places great demands on 3D content. However, most existing software requires expertise and is difficult for novice users to use. In this paper, we aim to create sketch-based modeling tools for user-friendly 3D modeling. We introduce Reality3DSketch with a novel application of an immersive 3D modeling experience, in which a user can capture the surrounding scene using a monocular RGB camera and can draw a single sketch of an object in the real-time reconstructed 3D scene. A 3D object is generated and placed in the desired location, enabled by our novel neural network with the input of a single sketch. Our neural network can predict the pose of a drawing and can turn a single sketch into a 3D model with view and structural awareness, which addresses the challenge of sparse sketch input and view ambiguity. We conducted extensive experiments synthetic and real-world datasets and achieved state-of-the-art (SOTA) results in both sketch view estimation and 3D modeling performance. According to our user study, our method of performing 3D modeling in a scene is $>$5x faster than conventional methods. Users are also more satisfied with the generated 3D model than the results of existing methods.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.

Today, the large number of players and the high computational requirements of video games have motivated research on Green Video Games. We present a survey that provides an overview of this recent research area. A total of 2,637 papers were reviewed, selecting 69 papers as primary studies for further analysis. Through a detailed analysis of the results, we propose a new way to define the Green Video Game issues based on motivation, device, and layer of the primary studies. Then, we analyze the different applied techniques, the limitations and levels of evidence, and specific aspects of video games.

Managing open-source software (OSS) projects requires managing communities of contributors. In particular, it is essential for project leaders to understand their community's diversity and turnover. We present CommunityTapestry, a dynamic real-time community dashboard, which presents key diversity and turnover signals that we identified from the literature and through participatory design sessions with stakeholders. We evaluated CommunityTapestry with an OSS project's contributors and Project Management Committee members, who explored the dashboard using their own project data. Our study results demonstrate that CommunityTapestry increased participants' awareness of their community composition and the diversity and turnover rates in the project. It helped them identify areas of improvement and gave them actionable information.

Traditional robotic systems require complex implementations that are not always accessible or easy to use for Human-Robot Interaction (HRI) application developers. With the aim of simplifying the implementation of HRI applications, this paper introduces a novel real-time operating system (RTOS) designed for customizable HRI - RoboSync. By creating multi-level abstraction layers, the system enables users to define complex emotional and behavioral models without needing deep technical expertise. The system's modular architecture comprises a behavior modeling layer, a machine learning plugin configuration layer, a sensor checks customization layer, a scheduler that fits the need of HRI, and a communication and synchronization layer. This approach not only promotes ease of use without highly specialized skills but also ensures real-time responsiveness and adaptability. The primary functionality of the RTOS has been implemented for proof of concept and was tested on a CortexM4 microcontroller, demonstrating its potential for a wide range of lightweight simple-to-implement social robotics applications.

This paper introduces Okapi, an innovative hardware/software cross-layer architecture designed to mitigate Transient Execution Side Channel (TES) attacks, including Spectre variants, in modern computing systems. A key contribution of Okapi is a set of security features building upon each other to offer various trade-offs between performance and security. At its core, Okapi allows for speculative data accesses if the targeted memory region has already been accessed non-speculatively before in the same trust domain. It delays first-time accesses until the speculation is resolved. Okapi stands out for its flexibility in security implementation. For environments with less stringent security needs, Okapi's features can be deactivated to eliminate performance overhead. When activated, the hardware modifications alone provide robust protection against transient execution attacks at a thread-level granularity, including all universal read gadgets like Spectre-PHT and Spectre-BTB. This incurs an average performance overhead of only 3.6 % for the SPEC CPU2017 benchmark suite. On top, Okapi introduces the OkapiReset instruction for additional software-level security support. This instruction, which can be manually inserted by developers or automatically via a compiler extension, allows for fully secure speculation and for trust domain sizes smaller than a thread. While the manual insertion of OkapiReset incurs an additional 0.6 % performance overhead, the automated compiler extension approach results in a 23.1 % overhead for making a cryptographic library fully secure. With an approximate 0.4 % hardware overhead, Okapi provides a highly scalable and adaptable solution for secure speculation in state-of-the-art processor design.

A timely software update is vital to combat the increasing security vulnerabilities. However, some software vendors may secretly patch their vulnerabilities without creating CVE entries or even describing the security issue in their change log. Thus, it is critical to identify these hidden security patches and defeat potential N-day attacks. Researchers have employed various machine learning techniques to identify security patches in open-source software, leveraging the syntax and semantic features of the software changes and commit messages. However, all these solutions cannot be directly applied to the binary code, whose instructions and program flow may dramatically vary due to different compilation configurations. In this paper, we propose BinGo, a new security patch detection system for binary code. The main idea is to present the binary code as code property graphs to enable a comprehensive understanding of program flow and perform a language model over each basic block of binary code to catch the instruction semantics. BinGo consists of four phases, namely, patch data pre-processing, graph extraction, embedding generation, and graph representation learning. Due to the lack of an existing binary security patch dataset, we construct such a dataset by compiling the pre-patch and post-patch source code of the Linux kernel. Our experimental results show BinGo can achieve up to 80.77% accuracy in identifying security patches between two neighboring versions of binary code. Moreover, BinGo can effectively reduce the false positives and false negatives caused by the different compilers and optimization levels.

Due to the increasing sophistication of web attacks, Web Application Firewalls (WAFs) have to be tested and updated regularly to resist the relentless flow of web attacks. In practice, using a brute-force attack to discover vulnerabilities is infeasible due to the wide variety of attack patterns. Thus, various black-box testing techniques have been proposed in the literature. However, these techniques suffer from low efficiency. This paper presents Reinforcement-Learning-Driven and Adaptive Testing (RAT), an automated black-box testing strategy to discover injection vulnerabilities in WAFs. In particular, we focus on SQL injection and Cross-site Scripting, which have been among the top ten vulnerabilities over the past decade. More specifically, RAT clusters similar attack samples together. It then utilizes a reinforcement learning technique combined with a novel adaptive search algorithm to discover almost all bypassing attack patterns efficiently. We compare RAT with three state-of-the-art methods considering their objectives. The experiments show that RAT performs 33.53% and 63.16% on average better than its counterparts in discovering the most possible bypassing payloads and reducing the number of attempts before finding the first bypassing payload when testing well-configured WAFs, respectively.

The emergence of Graph Neural Networks (GNNs) in graph data analysis and their deployment on Machine Learning as a Service platforms have raised critical concerns about data misuse during model training. This situation is further exacerbated due to the lack of transparency in local training processes, potentially leading to the unauthorized accumulation of large volumes of graph data, thereby infringing on the intellectual property rights of data owners. Existing methodologies often address either data misuse detection or mitigation, and are primarily designed for local GNN models rather than cloud-based MLaaS platforms. These limitations call for an effective and comprehensive solution that detects and mitigates data misuse without requiring exact training data while respecting the proprietary nature of such data. This paper introduces a pioneering approach called GraphGuard, to tackle these challenges. We propose a training-data-free method that not only detects graph data misuse but also mitigates its impact via targeted unlearning, all without relying on the original training data. Our innovative misuse detection technique employs membership inference with radioactive data, enhancing the distinguishability between member and non-member data distributions. For mitigation, we utilize synthetic graphs that emulate the characteristics previously learned by the target model, enabling effective unlearning even in the absence of exact graph data. We conduct comprehensive experiments utilizing four real-world graph datasets to demonstrate the efficacy of GraphGuard in both detection and unlearning. We show that GraphGuard attains a near-perfect detection rate of approximately 100% across these datasets with various GNN models. In addition, it performs unlearning by eliminating the impact of the unlearned graph with a marginal decrease in accuracy (less than 5%).

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司