亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Today, the large number of players and the high computational requirements of video games have motivated research on Green Video Games. We present a survey that provides an overview of this recent research area. A total of 2,637 papers were reviewed, selecting 69 papers as primary studies for further analysis. Through a detailed analysis of the results, we propose a new way to define the Green Video Game issues based on motivation, device, and layer of the primary studies. Then, we analyze the different applied techniques, the limitations and levels of evidence, and specific aspects of video games.

相關內容

Named Entity Recognition (NER) is a key information extraction task with a long-standing tradition. While recent studies address and aim to correct annotation errors via re-labeling efforts, little is known about the sources of human label variation, such as text ambiguity, annotation error, or guideline divergence. This is especially the case for high-quality datasets and beyond English CoNLL03. This paper studies disagreements in expert-annotated named entity datasets for three languages: English, Danish, and Bavarian. We show that text ambiguity and artificial guideline changes are dominant factors for diverse annotations among high-quality revisions. We survey student annotations on a subset of difficult entities and substantiate the feasibility and necessity of manifold annotations for understanding named entity ambiguities from a distributional perspective.

In the evolving landscape of online communication, moderating hate speech (HS) presents an intricate challenge, compounded by the multimodal nature of digital content. This comprehensive survey delves into the recent strides in HS moderation, spotlighting the burgeoning role of large language models (LLMs) and large multimodal models (LMMs). Our exploration begins with a thorough analysis of current literature, revealing the nuanced interplay between textual, visual, and auditory elements in propagating HS. We uncover a notable trend towards integrating these modalities, primarily due to the complexity and subtlety with which HS is disseminated. A significant emphasis is placed on the advances facilitated by LLMs and LMMs, which have begun to redefine the boundaries of detection and moderation capabilities. We identify existing gaps in research, particularly in the context of underrepresented languages and cultures, and the need for solutions to handle low-resource settings. The survey concludes with a forward-looking perspective, outlining potential avenues for future research, including the exploration of novel AI methodologies, the ethical governance of AI in moderation, and the development of more nuanced, context-aware systems. This comprehensive overview aims to catalyze further research and foster a collaborative effort towards more sophisticated, responsible, and human-centric approaches to HS moderation in the digital era. WARNING: This paper contains offensive examples.

Recent advances in NLP have improved our ability to understand the nuanced worldviews of online communities. Existing research focused on probing ideological stances treats liberals and conservatives as separate groups. However, this fails to account for the nuanced views of the organically formed online communities and the connections between them. In this paper, we study discussions of the 2020 U.S. election on Twitter to identify complex interacting communities. Capitalizing on this interconnectedness, we introduce a novel approach that harnesses message passing when finetuning language models (LMs) to probe the nuanced ideologies of these communities. By comparing the responses generated by LMs and real-world survey results, our method shows higher alignment than existing baselines, highlighting the potential of using LMs in revealing complex ideologies within and across interconnected mixed-ideology communities.

Creating and evaluating games manually is an arduous and laborious task. Procedural content generation can aid by creating game artifacts, but usually not an entire game. Evolutionary game design, which combines evolutionary algorithms with automated playtesting, has been used to create novel board games with simple equipment; however, the original approach does not include complex tabletop games with dice, cards, and maps. This work proposes an extension of the approach for tabletop games, evaluating the process by generating variants of Risk, a military strategy game where players must conquer map territories to win. We achieved this using a genetic algorithm to evolve the chosen parameters, as well as a rules-based agent to test the games and a variety of quality criteria to evaluate the new variations generated. Our results show the creation of new variations of the original game with smaller maps, resulting in shorter matches. Also, the variants produce more balanced matches, maintaining the usual drama. We also identified limitations in the process, where, in many cases, where the objective function was correctly pursued, but the generated games were nearly trivial. This work paves the way towards promising research regarding the use of evolutionary game design beyond classic board games.

The Internet of Things (IoT) has seen remarkable advancements in recent years, leading to a paradigm shift in the digital landscape. However, these technological strides have also brought new challenges, particularly in terms of cybersecurity. IoT devices are inherently connected to the internet, which makes them more vulnerable to attack. In addition, IoT services often handle sensitive user data, which could be misused by malicious actors or unauthorized service providers. As more mainstream service providers emerge without uniform regulations, these security risks are expected to escalate exponentially. The task of maintaining the security of IoT devices while they interact with cloud services is also challenging. Newer IoT services, especially those developed and deployed via Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) models, pose additional security threats. Although IoT devices are becoming more affordable and ubiquitous, their growing complexity could expose users to heightened security and privacy risks. This paper highlights these pressing security concerns associated with the widespread adoption of IoT devices and services. We propose potential solutions to bridge the existing security gaps and expect future challenges. Our approach entails a comprehensive exploration of the key security challenges that IoT services are currently facing. We also suggest proactive strategies to mitigate these risks, strengthening the overall security of IoT devices and services.

Large language models and AI chatbots have been at the forefront of democratizing artificial intelligence. However, the releases of ChatGPT and other similar tools have been followed by growing concerns regarding the difficulty of controlling large language models and their outputs. Currently, we are witnessing a cat-and-mouse game where users attempt to misuse the models with a novel attack called prompt injections. In contrast, the developers attempt to discover the vulnerabilities and block the attacks simultaneously. In this paper, we provide an overview of these emergent threats and present a categorization of prompt injections, which can guide future research on prompt injections and act as a checklist of vulnerabilities in the development of LLM interfaces. Moreover, based on previous literature and our own empirical research, we discuss the implications of prompt injections to LLM end users, developers, and researchers.

Design technology co-optimization (DTCO) plays a critical role in achieving optimal power, performance, and area (PPA) for advanced semiconductor process development. Cell library characterization is essential in DTCO flow, but traditional methods are time-consuming and costly. To overcome these challenges, we propose a graph neural network (GNN)-based machine learning model for rapid and accurate cell library characterization. Our model incorporates cell structures and demonstrates high prediction accuracy across various process-voltage-temperature (PVT) corners and technology parameters. Validation with 512 unseen technology corners and over one million test data points shows accurate predictions of delay, power, and input pin capacitance for 33 types of cells, with a mean absolute percentage error (MAPE) $\le$ 0.95% and a speed-up of 100X compared with SPICE simulations. Additionally, we investigate system-level metrics such as worst negative slack (WNS), leakage power, and dynamic power using predictions obtained from the GNN-based model on unseen corners. Our model achieves precise predictions, with absolute error $\le$3.0 ps for WNS, percentage errors $\le$0.60% for leakage power, and $\le$0.99% for dynamic power, when compared to golden reference. With the developed model, we further proposed a fine-grained drive strength interpolation methodology to enhance PPA for small-to-medium-scale designs, resulting in an approximate 1-3% improvement.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司