亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies an integrated sensing and communication (ISAC) system for single-target detection in a cloud radio access network architecture. The system considers downlink communication and multi-static sensing approach, where ISAC transmit access points (APs) jointly serve the user equipments (UEs) and optionally steer a beam toward the target. A centralized operation of cell-free massive MIMO (multiple-input multiple-output) is considered for communication and sensing purposes. A maximum a posteriori ratio test detector is developed to detect the target in the presence of clutter, so-called target-free signals. Moreover, a power allocation algorithm is proposed to maximize the sensing signal-to-interference-plus-noise ratio (SINR) while ensuring a minimum communication SINR value for each UE and meeting per-AP power constraints. Two ISAC setups are studied: i) using only existing communication beams for sensing and ii) using additional sensing beams. The proposed algorithm's efficiency is investigated in both realistic and idealistic scenarios, corresponding to the presence and absence of the target-free channels, respectively. Although detection probability degrades in the presence of target-free channels that act as interference, the proposed algorithm significantly outperforms the interference-unaware benchmark by exploiting the statistics of the clutter. It has also been shown that the proposed algorithm outperforms the fully communication-centric algorithm, both in the presence and absence of clutter. Moreover, using an additional sensing beam improves the detection performance for a target with lower radar cross-section variances compared to the case without sensing beams.

相關內容

We prove a characterization of the structural conditions on matrices of sign-rank 3 and unit disk graphs (UDGs) which permit constant-cost public-coin randomized communication protocols. Therefore, under these conditions, these graphs also admit implicit representations. The sign-rank of a matrix $M \in \{\pm 1\}^{N \times N}$ is the smallest rank of a matrix $R$ such that $M_{i,j} = \mathrm{sign}(R_{i,j})$ for all $i,j \in [N]$; equivalently, it is the smallest dimension $d$ in which $M$ can be represented as a point-halfspace incidence matrix with halfspaces through the origin, and it is essentially equivalent to the unbounded-error communication complexity. Matrices of sign-rank 3 can achieve the maximum possible bounded-error randomized communication complexity $\Theta(\log N)$, and meanwhile the existence of implicit representations for graphs of bounded sign-rank (including UDGs, which have sign-rank 4) has been open since at least 2003. We prove that matrices of sign-rank 3, and UDGs, have constant randomized communication complexity if and only if they do not encode arbitrarily large instances of the Greater-Than communication problem, or, equivalently, if they do not contain arbitrarily large half-graphs as semi-induced subgraphs. This also establishes the existence of implicit representations for these graphs under the same conditions.

Terahertz (THz) integrated sensing and communication (ISAC) enables simultaneous data transmission with Terabit-per-second (Tbps) rate and millimeter-level accurate sensing. To realize such a blueprint, ultra-massive antenna arrays with directional beamforming are used to compensate for severe path loss in the THz band. In this paper, the time-frequency-space transmit design is investigated for THz ISAC to generate time-varying scanning sensing beams and stable communication beams. Specifically, with the dynamic array-of-subarray (DAoSA) hybrid beamforming architecture and multi-carrier modulation, two ISAC hybrid precoding algorithms are proposed, namely, a vectorization (VEC) based algorithm that outperforms existing ISAC hybrid precoding methods and a low-complexity sensing codebook assisted (SCA) approach. Meanwhile, coupled with the transmit design, parameter estimation algorithms are proposed to realize high-accuracy sensing, including a wideband DAoSA MUSIC (W-DAoSA-MUSIC) method for angle estimation and a sum-DFT-GSS (S-DFT-GSS) approach for range and velocity estimation. Numerical results indicate that the proposed algorithms can realize centi-degree-level angle estimation accuracy and millimeter-level range estimation accuracy, which are one or two orders of magnitudes better than the methods in the millimeter-wave band. In addition, to overcome the cyclic prefix limitation and Doppler effects in the THz band, an inter-symbol interference- and inter-carrier interference-tackled sensing algorithm is developed to refine sensing capabilities for THz ISAC.

This paper presents a new active power control algorithm designed to maximize the power reserve of the individual turbines in a farm, in order to improve the tracking accuracy of a power reference signal. The control architecture is based on an open-loop optimal set-point scheduler combined with a feedback corrector, which actively regulate power by both wake steering and induction control. The methodology is compared with a state-of-the-art PI-based controller by means of high-fidelity LES simulations. The new wind farm controller reduces the occurrence of local saturation events, thereby improving the overall tracking accuracy, and limits fatigue loading in conditions of relatively high-power demand.

Semantic communication has gained significant attention from researchers as a promising technique to replace conventional communication in the next generation of communication systems, primarily due to its ability to reduce communication costs. However, little literature has studied its effectiveness in multi-user scenarios, particularly when there are variations in the model architectures used by users and their computing capacities. To address this issue, we explore a semantic communication system that caters to multiple users with different model architectures by using a multi-purpose transmitter at the base station (BS). Specifically, the BS in the proposed framework employs semantic and channel encoders to encode the image for transmission, while the receiver utilizes its local channel and semantic decoder to reconstruct the original image. Our joint source-channel encoder at the BS can effectively extract and compress semantic features for specific users by considering the signal-to-noise ratio (SNR) and computing capacity of the user. Based on the network status, the joint source-channel encoder at the BS can adaptively adjust the length of the transmitted signal. A longer signal ensures more information for high-quality image reconstruction for the user, while a shorter signal helps avoid network congestion. In addition, we propose a hybrid loss function for training, which enhances the perceptual details of reconstructed images. Finally, we conduct a series of extensive evaluations and ablation studies to validate the effectiveness of the proposed system.

In wireless security, cognitive adversaries are known to inject jamming energy on the victim's frequency band and monitor the same band for countermeasures thereby trapping the victim. Under the class of cognitive adversaries, we propose a new threat model wherein the adversary, upon executing the jamming attack, measures the long-term statistic of Kullback-Leibler Divergence (KLD) between its observations over each of the network frequencies before and after the jamming attack. To mitigate this adversary, we propose a new cooperative strategy wherein the victim takes the assistance for a helper node in the network to reliably communicate its message to the destination. The underlying idea is to appropriately split their energy and time resources such that their messages are reliably communicated without disturbing the statistical distribution of the samples in the network. We present rigorous analyses on the reliability and the covertness metrics at the destination and the adversary, respectively, and then synthesize tractable algorithms to obtain near-optimal division of resources between the victim and the helper. Finally, we show that the obtained near-optimal division of energy facilitates in deceiving the adversary with a KLD estimator.

In this work, we study massive multiple-input multiple-output (MIMO) precoders optimizing power consumption while achieving the users' rate requirements. We first characterize analytically the solutions for narrowband and wideband systems minimizing the power amplifiers (PAs) consumption in low system load, where the per-antenna power constraints are not binding. After, we focus on the asymptotic wideband regime. The power consumed by the whole base station (BS) and the high-load scenario are then also investigated. We obtain simple solutions, and the optimal strategy in the asymptotic case reduces to finding the optimal number of active antennas, relying on known precoders among the active antennas. Numerical results show that large savings in power consumption are achievable in the narrowband system by employing antenna selection, while all antennas need to be activated in the wideband system when considering only the PAs consumption, and this implies lower savings. When considering the overall BS power consumption and a large number of subcarriers, we show that significant savings are achievable in the low-load regime by using a subset of the BS antennas. While optimization based on transmit power pushes to activate all antennas, optimization based on consumed power activates a number of antennas proportional to the load.

The envisioned robotic aerial base station (RABS) concept is expected to bring further flexibility to integrated sensing and communication (ISAC) systems. In this letter, characterizing the spatial traffic distribution on a grid-based model, the RABS-assisted ISAC system is formulated as a robust optimization problem to maximize the minimum satisfaction rate (SR) under a cardinality constrained uncertainty set. The problem is reformulated as a mixed-integer linear programming (MILP) and solved approximately by the iterative linear programming rounding algorithm. Numerical investigations show that the minimum SR can be improved by 28.61% on average compared to fixed small cells.

In this paper, we investigate the spatial-wideband effects in cell-free massive MIMO (CF-mMIMO) systems in mmWave bands. The utilization of mmWave frequencies brings challenges such as signal attenuation and the need for denser networks like ultra-dense networks (UDN) to maintain communication performance. CF-mMIMO is introduced as a solution, where distributed access points (APs) transmit signals to a central processing unit (CPU) for joint processing. CF-mMIMO offers advantages in reducing non-line-of-sight (NLOS) conditions and overcoming signal blockage. We investigate the synchronization problem in CF-mMIMO due to time delays between APs. It proposes a minimum cyclic prefix length to mitigate inter-symbol interference (ISI) in OFDM systems. Furthermore, the spatial correlations of channel responses are analyzed in the frequency-phase domain. The impact of these correlations on system performance is examined. The findings contribute to improving the performance of CF-mMIMO systems and enhancing the effective utilization of mmWave communication.

We consider massive multiple-input multiple-output (MIMO) systems in the presence of Cauchy noise. First, we focus on the channel estimation problem. In the standard massive MIMO setup, the users transmit orthonormal pilots during the training phase and the received signal at the base station is projected onto each pilot. This processing is optimum when the noise is Gaussian. We show that this processing is not optimal when the noise is Cauchy and as a remedy propose a channel estimation technique that operates on the raw received signal. Second, we derive uplink-downlink achievable rates in the presence of Cauchy noise for perfect and imperfect channel state information. Finally, we derive log-likelihood ratio expressions for soft bit detection for both uplink and downlink, and simulate coded bit-error-rate curves. In addition to this, we derive and compare the symbol detectors in the presence of both Gaussian and Cauchy noises. An important observation is that the detector constructed for Cauchy noise performs well with both Gaussian and Cauchy noises; on the other hand, the detector for Gaussian noise works poorly in the presence of Cauchy noise. That is, the Cauchy detector is robust against heavy-tailed noise, whereas the Gaussian detector is not.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司