亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In wireless security, cognitive adversaries are known to inject jamming energy on the victim's frequency band and monitor the same band for countermeasures thereby trapping the victim. Under the class of cognitive adversaries, we propose a new threat model wherein the adversary, upon executing the jamming attack, measures the long-term statistic of Kullback-Leibler Divergence (KLD) between its observations over each of the network frequencies before and after the jamming attack. To mitigate this adversary, we propose a new cooperative strategy wherein the victim takes the assistance for a helper node in the network to reliably communicate its message to the destination. The underlying idea is to appropriately split their energy and time resources such that their messages are reliably communicated without disturbing the statistical distribution of the samples in the network. We present rigorous analyses on the reliability and the covertness metrics at the destination and the adversary, respectively, and then synthesize tractable algorithms to obtain near-optimal division of resources between the victim and the helper. Finally, we show that the obtained near-optimal division of energy facilitates in deceiving the adversary with a KLD estimator.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

To support the extremely high spectral efficiency and energy efficiency requirements, and emerging applications of future wireless communications, holographic multiple-input multiple-output (H-MIMO) technology is envisioned as one of the most promising enablers. It can potentially bring extra degrees-of-freedom for communications and signal processing, including spatial multiplexing in line-of-sight (LoS) channels and electromagnetic (EM) field processing performed using specialized devices, to attain the fundamental limits of wireless communications. In this context, EM-domain channel modeling is critical to harvest the benefits offered by H-MIMO. Existing EM-domain channel models are built based on the tensor Green function, which require prior knowledge of the global position and/or the relative distances and directions of the transmit/receive antenna elements. Such knowledge may be difficult to acquire in real-world applications due to extensive measurements needed for obtaining this data. To overcome this limitation, we propose a transmit-receive parameter separable channel model methodology in which the EM-domain (or holographic) channel can be simply acquired from the distance/direction measured between the center-points between the transmit and receive surfaces, and the local positions between the transmit and receive elements, thus avoiding extensive global parameter measurements. Analysis and numerical results showcase the effectiveness of the proposed channel modeling approach in approximating the H-MIMO channel, and achieving the theoretical channel capacity.

Terahertz (THz) communication is widely deemed the next frontier of wireless networks owing to the abundant spectrum resources in the THz band. Whilst THz signals suffer from severe propagation losses, a massive antenna array can be deployed at the base station (BS) to mitigate those losses through beamforming. Nevertheless, a very large number of antennas increases the BS's hardware complexity and power consumption, and hence it can lead to poor energy efficiency (EE). To surmount this fundamental problem, we propose a novel array design based on superdirectivity and nonuniform inter-element spacing. Specifically, we exploit the mutual coupling between closely spaced elements to form superdirective pairs. A unique property of them is that all require the same excitation amplitude, and thus can be driven by a single radio frequency chain akin to conventional phased arrays. Moreover, they facilitate multi-port impedance matching, which ensures maximum power transfer for any beamforming angle. After addressing the implementation issues of superdirectivity, we show that the number of BS antennas can be effectively reduced without sacrificing the achievable rate. Simulation results demonstrate that our design offers huge EE gains compared to uncoupled arrays with uniform spacing, and hence could be a radical solution for future THz systems.

Vehicular communication networks are rapidly emerging as vehicles become smarter. However, these networks are increasingly susceptible to various attacks. The situation is exacerbated by the rise in automated vehicles complicates, emphasizing the need for security and authentication measures to ensure safe and effective traffic management. In this paper, we propose a novel hybrid physical layer security (PLS)-machine learning (ML) authentication scheme by exploiting the position of the transmitter vehicle as a device fingerprint. We use a time-of-arrival (ToA) based localization mechanism where the ToA is estimated at roadside units (RSUs), and the coordinates of the transmitter vehicle are extracted at the base station (BS).Furthermore, to track the mobility of the moving legitimate vehicle, we use ML model trained on several system parameters. We try two ML models for this purpose, i.e., support vector regression and decision tree. To evaluate our scheme, we conduct binary hypothesis testing on the estimated positions with the help of the ground truths provided by the ML model, which classifies the transmitter node as legitimate or malicious. Moreover, we consider the probability of false alarm and the probability of missed detection as performance metrics resulting from the binary hypothesis testing, and mean absolute error (MAE), mean square error (MSE), and coefficient of determination $\text{R}^2$ to further evaluate the ML models. We also compare our scheme with a baseline scheme that exploits the angle of arrival at RSUs for authentication. We observe that our proposed position-based mechanism outperforms the baseline scheme significantly in terms of missed detections.

With the increase in data availability, it has been widely demonstrated that neural networks (NN) can capture complex system dynamics precisely in a data-driven manner. However, the architectural complexity and nonlinearity of the NNs make it challenging to synthesize a provably safe controller. In this work, we propose a novel safety filter that relies on convex optimization to ensure safety for a NN system, subject to additive disturbances that are capable of capturing modeling errors. Our approach leverages tools from NN verification to over-approximate NN dynamics with a set of linear bounds, followed by an application of robust linear MPC to search for controllers that can guarantee robust constraint satisfaction. We demonstrate the efficacy of the proposed framework numerically on a nonlinear pendulum system.

The use of supervised deep neural network approaches has been investigated to solve inverse problems in all domains, especially radiology where imaging technologies are at the heart of diagnostics. However, in deployment, these models are exposed to input distributions that are widely shifted from training data, due in part to data biases or drifts. It becomes crucial to know whether a given input lies outside the training data distribution before relying on the reconstruction for diagnosis. The goal of this work is three-fold: (i) demonstrate use of the local Lipshitz value as an uncertainty estimation threshold for determining suitable performance, (ii) provide method for identifying out-of-distribution (OOD) images where the model may not have generalized, and (iii) use the local Lipschitz values to guide proper data augmentation through identifying false positives and decrease epistemic uncertainty. We provide results for both MRI reconstruction and CT sparse view to full view reconstruction using AUTOMAP and UNET architectures due to it being pertinent in the medical domain that reconstructed images remain diagnostically accurate.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司