In this paper, we propose a novel voxel-based 3D single object tracking (3D SOT) method called Voxel Pseudo Image Tracking (VPIT). VPIT is the first method that uses voxel pseudo images for 3D SOT. The input point cloud is structured by pillar-based voxelization, and the resulting pseudo image is used as an input to a 2D-like Siamese SOT method. The pseudo image is created in the Bird's-eye View (BEV) coordinates, and therefore the objects in it have constant size. Thus, only the object rotation can change in the new coordinate system and not the object scale. For this reason, we replace multi-scale search with a multi-rotation search, where differently rotated search regions are compared against a single target representation to predict both position and rotation of the object. Experiments on KITTI Tracking dataset show that VPIT is the fastest 3D SOT method and maintains competitive Success and Precision values. Application of a SOT method in a real-world scenario meets with limitations such as lower computational capabilities of embedded devices and a latency-unforgiving environment, where the method is forced to skip certain data frames if the inference speed is not high enough. We implement a real-time evaluation protocol and show that other methods lose most of their performance on embedded devices, while VPIT maintains its ability to track the object.
Human perception reliably identifies movable and immovable parts of 3D scenes, and completes the 3D structure of objects and background from incomplete observations. We learn this skill not via labeled examples, but simply by observing objects move. In this work, we propose an approach that observes unlabeled multi-view videos at training time and learns to map a single image observation of a complex scene, such as a street with cars, to a 3D neural scene representation that is disentangled into movable and immovable parts while plausibly completing its 3D structure. We separately parameterize movable and immovable scene parts via 2D neural ground plans. These ground plans are 2D grids of features aligned with the ground plane that can be locally decoded into 3D neural radiance fields. Our model is trained self-supervised via neural rendering. We demonstrate that the structure inherent to our disentangled 3D representation enables a variety of downstream tasks in street-scale 3D scenes using simple heuristics, such as extraction of object-centric 3D representations, novel view synthesis, instance segmentation, and 3D bounding box prediction, highlighting its value as a backbone for data-efficient 3D scene understanding models. This disentanglement further enables scene editing via object manipulation such as deletion, insertion, and rigid-body motion.
Most prior works in perceiving 3D humans from images reason human in isolation without their surroundings. However, humans are constantly interacting with the surrounding objects, thus calling for models that can reason about not only the human but also the object and their interaction. The problem is extremely challenging due to heavy occlusions between humans and objects, diverse interaction types and depth ambiguity. In this paper, we introduce CHORE, a novel method that learns to jointly reconstruct the human and the object from a single RGB image. CHORE takes inspiration from recent advances in implicit surface learning and classical model-based fitting. We compute a neural reconstruction of human and object represented implicitly with two unsigned distance fields, a correspondence field to a parametric body and an object pose field. This allows us to robustly fit a parametric body model and a 3D object template, while reasoning about interactions. Furthermore, prior pixel-aligned implicit learning methods use synthetic data and make assumptions that are not met in the real data. We propose a elegant depth-aware scaling that allows more efficient shape learning on real data. Experiments show that our joint reconstruction learned with the proposed strategy significantly outperforms the SOTA. Our code and models are available at //virtualhumans.mpi-inf.mpg.de/chore
While the voxel-based methods have achieved promising results for multi-person 3D pose estimation from multi-cameras, they suffer from heavy computation burdens, especially for large scenes. We present Faster VoxelPose to address the challenge by re-projecting the feature volume to the three two-dimensional coordinate planes and estimating X, Y, Z coordinates from them separately. To that end, we first localize each person by a 3D bounding box by estimating a 2D box and its height based on the volume features projected to the xy-plane and z-axis, respectively. Then for each person, we estimate partial joint coordinates from the three coordinate planes separately which are then fused to obtain the final 3D pose. The method is free from costly 3D-CNNs and improves the speed of VoxelPose by ten times and meanwhile achieves competitive accuracy as the state-of-the-art methods, proving its potential in real-time applications.
In this paper, we consider the problems in the practical application of visual simultaneous localization and mapping (SLAM). With the popularization and application of the technology in wide scope, the practicability of SLAM system has become a new hot topic after the accuracy and robustness, e.g., how to keep the stability of the system and achieve accurate pose estimation in the low-texture and dynamic environment, and how to improve the universality and real-time performance of the system in the real scenes, etc. This paper proposes a real-time stereo indirect visual SLAM system, PLD-SLAM, which combines point and line features, and avoid the impact of dynamic objects in highly dynamic environments. We also present a novel global gray similarity (GGS) algorithm to achieve reasonable keyframe selection and efficient loop closure detection (LCD). Benefiting from the GGS, PLD-SLAM can realize real-time accurate pose estimation in most real scenes without pre-training and loading a huge feature dictionary model. To verify the performance of the proposed system, we compare it with existing state-of-the-art (SOTA) methods on the public datasets KITTI, EuRoC MAV, and the indoor stereo datasets provided by us, etc. The experiments show that the PLD-SLAM has better real-time performance while ensuring stability and accuracy in most scenarios. In addition, through the analysis of the experimental results of the GGS, we can find it has excellent performance in the keyframe selection and LCD.
In this paper, we propose an iterative self-training framework for sim-to-real 6D object pose estimation to facilitate cost-effective robotic grasping. Given a bin-picking scenario, we establish a photo-realistic simulator to synthesize abundant virtual data, and use this to train an initial pose estimation network. This network then takes the role of a teacher model, which generates pose predictions for unlabeled real data. With these predictions, we further design a comprehensive adaptive selection scheme to distinguish reliable results, and leverage them as pseudo labels to update a student model for pose estimation on real data. To continuously improve the quality of pseudo labels, we iterate the above steps by taking the trained student model as a new teacher and re-label real data using the refined teacher model. We evaluate our method on a public benchmark and our newly-released dataset, achieving an ADD(-S) improvement of 11.49% and 22.62% respectively. Our method is also able to improve robotic bin-picking success by 19.54%, demonstrating the potential of iterative sim-to-real solutions for robotic applications.
3D image segmentation is a recent and crucial step in many medical analysis and recognition schemes. In fact, it represents a relevant research subject and a fundamental challenge due to its importance and influence. This paper provides a multi-phase Deep Learning-based system that hybridizes various efficient methods in order to get the best 3D segmentation output. First, to reduce the amount of data and accelerate the processing time, the application of Decimate compression technique is suggested and justified. We then use a CNN model to segment dental images into fifteen separated classes. In the end, a special KNN-based transformation is applied for the purpose of removing isolated meshes and of correcting dental forms. Experimentations demonstrate the precision and the robustness of the selected framework applied to 3D dental images within a private clinical benchmark.
In clinical procedures of angioplasty (i.e., open clogged coronary arteries), devices such as balloons and stents need to be placed and expanded in arteries under the guidance of X-ray fluoroscopy. Due to the limitation of X-ray dose, the resulting images are often noisy. To check the correct placement of these devices, typically multiple motion-compensated frames are averaged to enhance the view. Therefore, device tracking is a necessary procedure for this purpose. Even though angioplasty devices are designed to have radiopaque markers for the ease of tracking, current methods struggle to deliver satisfactory results due to the small marker size and complex scenes in angioplasty. In this paper, we propose an end-to-end deep learning framework for single stent tracking, which consists of three hierarchical modules: U-Net based landmark detection, ResNet based stent proposal and feature extraction, and graph convolutional neural network (GCN) based stent tracking that temporally aggregates both spatial information and appearance features. The experiments show that our method performs significantly better in detection compared with the state-of-the-art point-based tracking models. In addition, its fast inference speed satisfies clinical requirements.
Estimating the target extent poses a fundamental challenge in visual object tracking. Typically, trackers are box-centric and fully rely on a bounding box to define the target in the scene. In practice, objects often have complex shapes and are not aligned with the image axis. In these cases, bounding boxes do not provide an accurate description of the target and often contain a majority of background pixels. We propose a segmentation-centric tracking pipeline that not only produces a highly accurate segmentation mask, but also internally works with segmentation masks instead of bounding boxes. Thus, our tracker is able to better learn a target representation that clearly differentiates the target in the scene from background content. In order to achieve the necessary robustness for the challenging tracking scenario, we propose a separate instance localization component that is used to condition the segmentation decoder when producing the output mask. We infer a bounding box from the segmentation mask, validate our tracker on challenging tracking datasets and achieve the new state of the art on LaSOT with a success AUC score of 69.7%. Since most tracking datasets do not contain mask annotations, we cannot use them to evaluate predicted segmentation masks. Instead, we validate our segmentation quality on two popular video object segmentation datasets.
Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.