亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

How can we train an assistive human-machine interface (e.g., an electromyography-based limb prosthesis) to translate a user's raw command signals into the actions of a robot or computer when there is no prior mapping, we cannot ask the user for supervision in the form of action labels or reward feedback, and we do not have prior knowledge of the tasks the user is trying to accomplish? The key idea in this paper is that, regardless of the task, when an interface is more intuitive, the user's commands are less noisy. We formalize this idea as a completely unsupervised objective for optimizing interfaces: the mutual information between the user's command signals and the induced state transitions in the environment. To evaluate whether this mutual information score can distinguish between effective and ineffective interfaces, we conduct an observational study on 540K examples of users operating various keyboard and eye gaze interfaces for typing, controlling simulated robots, and playing video games. The results show that our mutual information scores are predictive of the ground-truth task completion metrics in a variety of domains, with an average Spearman's rank correlation of 0.43. In addition to offline evaluation of existing interfaces, we use our unsupervised objective to learn an interface from scratch: we randomly initialize the interface, have the user attempt to perform their desired tasks using the interface, measure the mutual information score, and update the interface to maximize mutual information through reinforcement learning. We evaluate our method through a user study with 12 participants who perform a 2D cursor control task using a perturbed mouse, and an experiment with one user playing the Lunar Lander game using hand gestures. The results show that we can learn an interface from scratch, without any user supervision or prior knowledge of tasks, in under 30 minutes.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · 向量化 · 數據集 · AIM ·
2022 年 10 月 25 日

One of the challenges in virtual environments is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the user's emotions. This paper investigates features extracted from electroencephalogram signals for the purpose of affective state modelling based on Russell's Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect to enhance interaction experience in virtual environments. The DEAP dataset was used within this work, along with a Support Vector Machine and Random Forest, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the \'z, \b{eta}, \'z, and \'z\'z waves and High Order Crossing of the EEG signal.

In this paper, we focus on unsupervised learning for Video Object Segmentation (VOS) which learns visual correspondence (i.e., the similarity between pixel-level features) from unlabeled videos. Previous methods are mainly based on the contrastive learning paradigm, which optimize either in image level or pixel level. Image-level optimization (e.g., the spatially pooled feature of ResNet) learns robust high-level semantics but is sub-optimal since the pixel-level features are optimized implicitly. By contrast, pixel-level optimization is more explicit, however, it is sensitive to the visual quality of training data and is not robust to object deformation. To complementarily perform these two levels of optimization in a unified framework, we propose the In-aNd-Out (INO) generative learning from a purely generative perspective with the help of naturally designed class tokens and patch tokens in Vision Transformer (ViT). Specifically, for image-level optimization, we force the out-view imagination from local to global views on class tokens, which helps capture high-level semantics, and we name it as out-generative learning. As to pixel-level optimization, we perform in-view masked image modeling on patch tokens, which recovers the corrupted parts of an image via inferring its fine-grained structure, and we term it as in-generative learning. To discover the temporal information better, we additionally force the inter-frame consistency from both feature and affinity matrix levels. Extensive experiments on DAVIS-2017 val and YouTube-VOS 2018 val show that our INO outperforms previous state-of-the-art methods by significant margins. Code is available: //github.com/pansanity666/INO_VOS

Term extraction is an information extraction task at the root of knowledge discovery platforms. Developing term extractors that are able to generalize across very diverse and potentially highly technical domains is challenging, as annotations for domains requiring in-depth expertise are scarce and expensive to obtain. In this paper, we describe the term extraction subsystem of a commercial knowledge discovery platform that targets highly technical fields such as pharma, medical, and material science. To be able to generalize across domains, we introduce a fully unsupervised annotator (UA). It extracts terms by combining novel morphological signals from sub-word tokenization with term-to-topic and intra-term similarity metrics, computed using general-domain pre-trained sentence-encoders. The annotator is used to implement a weakly-supervised setup, where transformer-models are fine-tuned (or pre-trained) over the training data generated by running the UA over large unlabeled corpora. Our experiments demonstrate that our setup can improve the predictive performance while decreasing the inference latency on both CPUs and GPUs. Our annotators provide a very competitive baseline for all the cases where annotations are not available.

We present a framework, called MVG-NeRF, that combines classical Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction. NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable volumetric rendering formulation that enables high-quality and geometry-aware novel view synthesis. However, the underlying geometry of the scene is not explicitly constrained during training, thus leading to noisy and incorrect results when extracting a mesh with marching cubes. To this end, we propose to leverage pixelwise depths and normals from a classical 3D reconstruction pipeline as geometric priors to guide NeRF optimization. Such priors are used as pseudo-ground truth during training in order to improve the quality of the estimated underlying surface. Moreover, each pixel is weighted by a confidence value based on the forward-backward reprojection error for additional robustness. Experimental results on real-world data demonstrate the effectiveness of this approach in obtaining clean 3D meshes from images, while maintaining competitive performances in novel view synthesis.

Expert decision-makers (DMs) in high-stakes AI-advised (AIDeT) settings receive and reconcile recommendations from AI systems before making their final decisions. We identify distinct properties of these settings which are key to developing AIDeT models that effectively benefit team performance. First, DMs in AIDeT settings exhibit algorithm discretion behavior (ADB), i.e., an idiosyncratic tendency to imperfectly accept or reject algorithmic recommendations for any given decision task. Second, DMs incur contradiction costs from exerting decision-making resources (e.g., time and effort) when reconciling AI recommendations that contradict their own judgment. Third, the human'simperfect discretion and reconciliation costs introduce the need for the AI to offer advice selectively. We refer to the task of developing AI to advise humans in AIDeT settings as learning to advise} and we address this task by first introducing the AIDeT-Learning Framework. Additionally, we argue that leveraging the human partner's ADB is key to maximizing the AIDeT's decision accuracy while regularizing for contradiction costs. Finally, we instantiate our framework to develop TeamRules (TR): an algorithm that produces rule-based models and recommendations for AIDeT settings. TR is optimized to selectively advise a human and to trade-off contradiction costs and team accuracy for a given environment by leveraging the human partner's ADB. Evaluations on synthetic and real-world benchmark datasets with a variety of simulated human accuracy and discretion behaviors show that TR robustly improves the team's objective across settings over interpretable, rule-based alternatives.

Using machine learning to solve combinatorial optimization (CO) problems is challenging, especially when the data is unlabeled. This work proposes an unsupervised learning framework for CO problems. Our framework follows a standard relaxation-plus-rounding approach and adopts neural networks to parameterize the relaxed solutions so that simple back-propagation can train the model end-to-end. Our key contribution is the observation that if the relaxed objective satisfies entry-wise concavity, a low optimization loss guarantees the quality of the final integral solutions. This observation significantly broadens the applicability of the previous framework inspired by Erdos' probabilistic method. In particular, this observation can guide the design of objective models in applications where the objectives are not given explicitly while requiring being modeled in prior. We evaluate our framework by solving a synthetic graph optimization problem, and two real-world applications including resource allocation in circuit design and approximate computing. Our framework largely outperforms the baselines based on na\"{i}ve relaxation, reinforcement learning, and Gumbel-softmax tricks.

In domains where sample sizes are limited, efficient learning algorithms are critical. Learning using privileged information (LuPI) offers increased sample efficiency by allowing prediction models access to auxiliary information at training time which is unavailable when the models are used. In recent work, it was shown that for prediction in linear-Gaussian dynamical systems, a LuPI learner with access to intermediate time series data is never worse and often better in expectation than any unbiased classical learner. We provide new insights into this analysis and generalize it to nonlinear prediction tasks in latent dynamical systems, extending theoretical guarantees to the case where the map connecting latent variables and observations is known up to a linear transform. In addition, we propose algorithms based on random features and representation learning for the case when this map is unknown. A suite of empirical results confirm theoretical findings and show the potential of using privileged time-series information in nonlinear prediction.

Feature selection plays a vital role in promoting the classifier's performance. However, current methods ineffectively distinguish the complex interaction in the selected features. To further remove these hidden negative interactions, we propose a GA-like dynamic probability (GADP) method with mutual information which has a two-layer structure. The first layer applies the mutual information method to obtain a primary feature subset. The GA-like dynamic probability algorithm, as the second layer, mines more supportive features based on the former candidate features. Essentially, the GA-like method is one of the population-based algorithms so its work mechanism is similar to the GA. Different from the popular works which frequently focus on improving GA's operators for enhancing the search ability and lowering the converge time, we boldly abandon GA's operators and employ the dynamic probability that relies on the performance of each chromosome to determine feature selection in the new generation. The dynamic probability mechanism significantly reduces the parameter number in GA that making it easy to use. As each gene's probability is independent, the chromosome variety in GADP is more notable than in traditional GA, which ensures GADP has a wider search space and selects relevant features more effectively and accurately. To verify our method's superiority, we evaluate our method under multiple conditions on 15 datasets. The results demonstrate the outperformance of the proposed method. Generally, it has the best accuracy. Further, we also compare the proposed model to the popular heuristic methods like POS, FPA, and WOA. Our model still owns advantages over them.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

北京阿比特科技有限公司