Laboratory experiments have shown that communication plays an important role in solving social dilemmas. Here, by extending the AI-Economist, a mixed motive multi-agent reinforcement learning environment, I intend to find an answer to the following descriptive question: which governing system does facilitate the emergence and evolution of communication and teaching among agents? To answer this question, the AI-Economist is extended by a voting mechanism to simulate three different governing systems across individualistic-collectivistic axis, from full-libertarian to Full-Utilitarian governing systems. Moreover, the AI-Economist is further extended to include communication with possible misalignment, a variant of signalling game, by letting agents to build houses together if they are able to name mutually complement material resources by the same letter. Moreover, another extension is made to the AI-Economist to include teaching with possible misalignment, again a variant of signalling game, by letting half the agents as teachers who know how to use mutually complement material resources to build houses but are not capable of building actual houses, and the other half as students who do not have this information but are able to actually build those houses if teachers teach them. I found a strong evidence that collectivistic environment such as Full-Utilitarian system is more favourable for the emergence of communication and teaching, or more precisely, evolution of language alignment. Moreover, I found some evidence that evolution of language alignment through communication and teaching under collectivistic governing systems makes individuals more advantageously inequity averse. As a result, there is a positive correlation between evolution of language alignment and equality in the society.
Over the years, various approaches have been employed to enhance the productivity of knowledge workers, from addressing psychological well-being to the development of personal knowledge assistants. A significant challenge in this research area has been the absence of a comprehensive, publicly accessible dataset that mirrors real-world knowledge work. Although a handful of datasets exist, many are restricted in access or lack vital information dimensions, complicating meaningful comparison and benchmarking in the domain. This paper presents RLKWiC, a novel dataset of Real-Life Knowledge Work in Context, derived from monitoring the computer interactions of eight participants over a span of two months. As the first publicly available dataset offering a wealth of essential information dimensions (such as explicated contexts, textual contents, and semantics), RLKWiC seeks to address the research gap in the personal information management domain, providing valuable insights for modeling user behavior.
Deep neural networks are increasingly used in a wide range of technologies and services, but remain highly susceptible to out-of-distribution (OOD) samples, that is, drawn from a different distribution than the original training set. A common approach to address this issue is to endow deep neural networks with the ability to detect OOD samples. Several benchmarks have been proposed to design and validate OOD detection techniques. However, many of them are based on far-OOD samples drawn from very different distributions, and thus lack the complexity needed to capture the nuances of real-world scenarios. In this work, we introduce a comprehensive benchmark for OOD detection, based on ImageNet and Places365, that assigns individual classes as in-distribution or out-of-distribution depending on the semantic similarity with the training set. Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties. Experimental results on different OOD detection techniques show how their measured efficacy depends on the selected benchmark and how confidence-based techniques may outperform classifier-based ones on near-OOD samples.
Large Language Models have become an integral part of new intelligent and interactive writing assistants. Many are offered commercially with a chatbot-like UI, such as ChatGPT, and provide little information about their inner workings. This makes this new type of widespread system a potential target for deceptive design patterns. For example, such assistants might exploit hidden costs by providing guidance up until a certain point before asking for a fee to see the rest. As another example, they might sneak unwanted content/edits into longer generated or revised text pieces (e.g. to influence the expressed opinion). With these and other examples, we conceptually transfer several deceptive patterns from the literature to the new context of AI writing assistants. Our goal is to raise awareness and encourage future research into how the UI and interaction design of such systems can impact people and their writing.
Dimensionality reduction techniques are widely used for visualizing high-dimensional data. However, support for interpreting patterns of dimension reduction results in the context of the original data space is often insufficient. Consequently, users may struggle to extract insights from the projections. In this paper, we introduce DimBridge, a visual analytics tool that allows users to interact with visual patterns in a projection and retrieve corresponding data patterns. DimBridge supports several interactions, allowing users to perform various analyses, from contrasting multiple clusters to explaining complex latent structures. Leveraging first-order predicate logic, DimBridge identifies subspaces in the original dimensions relevant to a queried pattern and provides an interface for users to visualize and interact with them. We demonstrate how DimBridge can help users overcome the challenges associated with interpreting visual patterns in projections.
Accelerated computing is widely used in high-performance computing. Therefore, it is crucial to experiment and discover how to better utilize GPUGPUs latest generations on relevant applications. In this paper, we present results and share insights about highly tuned stencil-based kernels for NVIDIA Ampere (A100) and Hopper (GH200) architectures. Performance results yield useful insights into the behavior of this type of algorithms for these new accelerators. This knowledge can be leveraged by many scientific applications which involve stencils computations. Further, evaluation of three different programming models: CUDA, OpenACC, and OpenMP target offloading is conducted on aforementioned accelerators. We extensively study the performance and portability of various kernels under each programming model and provide corresponding optimization recommendations. Furthermore, we compare the performance of different programming models on the mentioned architectures. Up to 58% performance improvement was achieved against the previous GPGPU's architecture generation for an highly optimized kernel of the same class, and up to 42% for all classes. In terms of programming models, and keeping portability in mind, optimized OpenACC implementation outperforms OpenMP implementation by 33%. If portability is not a factor, our best tuned CUDA implementation outperforms the optimized OpenACC one by 2.1x.
Existing prompt learning methods have shown certain capabilities in Out-of-Distribution (OOD) detection, but the lack of OOD images in the target dataset in their training can lead to mismatches between OOD images and In-Distribution (ID) categories, resulting in a high false positive rate. To address this issue, we introduce a novel OOD detection method, named 'NegPrompt', to learn a set of negative prompts, each representing a negative connotation of a given class label, for delineating the boundaries between ID and OOD images. It learns such negative prompts with ID data only, without any reliance on external outlier data. Further, current methods assume the availability of samples of all ID classes, rendering them ineffective in open-vocabulary learning scenarios where the inference stage can contain novel ID classes not present during training. In contrast, our learned negative prompts are transferable to novel class labels. Experiments on various ImageNet benchmarks show that NegPrompt surpasses state-of-the-art prompt-learning-based OOD detection methods and maintains a consistent lead in hard OOD detection in closed- and open-vocabulary classification scenarios. Code is available at //github.com/mala-lab/negprompt.
We investigate the role of uncertainty in decision-making problems with natural language as input. For such tasks, using Large Language Models as agents has become the norm. However, none of the recent approaches employ any additional phase for estimating the uncertainty the agent has about the world during the decision-making task. We focus on a fundamental decision-making framework with natural language as input, which is the one of contextual bandits, where the context information consists of text. As a representative of the approaches with no uncertainty estimation, we consider an LLM bandit with a greedy policy, which picks the action corresponding to the largest predicted reward. We compare this baseline to LLM bandits that make active use of uncertainty estimation by integrating the uncertainty in a Thompson Sampling policy. We employ different techniques for uncertainty estimation, such as Laplace Approximation, Dropout, and Epinets. We empirically show on real-world data that the greedy policy performs worse than the Thompson Sampling policies. These findings suggest that, while overlooked in the LLM literature, uncertainty plays a fundamental role in bandit tasks with LLMs.
Diabetic Retinopathy (DR) stands as the leading cause of blindness globally, particularly affecting individuals between the ages of 20 and 70. This paper presents a Computer-Aided Diagnosis (CAD) system designed for the automatic classification of retinal images into five distinct classes: Normal, Mild, Moderate, Severe, and Proliferative Diabetic Retinopathy (PDR). The proposed system leverages Convolutional Neural Networks (CNNs) employing pre-trained deep learning models. Through the application of fine-tuning techniques, our model is trained on fundus images of diabetic retinopathy with resolutions of 350x350x3 and 224x224x3. Experimental results obtained on the Kaggle platform, utilizing resources comprising 4 CPUs, 17 GB RAM, and 1 GB Disk, demonstrate the efficacy of our approach. The achieved Area Under the Curve (AUC) values for CNN, MobileNet, VGG-16, InceptionV3, and InceptionResNetV2 models are 0.50, 0.70, 0.53, 0.63, and 0.69, respectively.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.