A new model called Clustering with Neural Network and Index (CNNI) is introduced. CNNI uses a Neural Network to cluster data points. Training of the Neural Network mimics supervised learning, with an internal clustering evaluation index acting as the loss function. An experiment is conducted to test the feasibility of the new model, and compared with results of other clustering models like K-means and Gaussian Mixture Model (GMM). The result shows CNNI can work properly for clustering data; CNNI equipped with MMJ-SC, achieves the first parametric (inductive) clustering model that can deal with non-convex shaped (non-flat geometry) data.
Large language models (LLMs), such as ChatGPT and GPT4, have shown outstanding performance in many human life task. Attention computation plays an important role in training LLMs. Softmax unit and ReLU unit are the key structure in attention computation. Inspired by them, we put forward a softmax ReLU regression problem. Generally speaking, our goal is to find an optimal solution to the regression problem involving the ReLU unit. In this work, we calculate a close form representation for the Hessian of the loss function. Under certain assumptions, we prove the Lipschitz continuous and the PSDness of the Hessian. Then, we introduce an greedy algorithm based on approximate Newton method, which converges in the sense of the distance to optimal solution. Last, We relax the Lipschitz condition and prove the convergence in the sense of loss value.
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties. However, due to the selection bias of training and testing data (e.g., training on small graphs and testing on large graphs, or training on dense graphs and testing on sparse graphs), distribution deviation is widespread. More importantly, we often observe \emph{hybrid structure distribution shift} of both scale and density, despite of one-sided biased data partition. The spurious correlations over hybrid distribution deviation degrade the performance of previous GNN methods and show large instability among different datasets. To alleviate this problem, we propose \texttt{OOD-GMixup} to jointly manipulate the training distribution with \emph{controllable data augmentation} in metric space. Specifically, we first extract the graph rationales to eliminate the spurious correlations due to irrelevant information. Secondly, we generate virtual samples with perturbation on graph rationale representation domain to obtain potential OOD training samples. Finally, we propose OOD calibration to measure the distribution deviation of virtual samples by leveraging Extreme Value Theory, and further actively control the training distribution by emphasizing the impact of virtual OOD samples. Extensive studies on several real-world datasets on graph classification demonstrate the superiority of our proposed method over state-of-the-art baselines.
The field of robotic Flexible Endoscopes (FEs) has progressed significantly, offering a promising solution to reduce patient discomfort. However, the limited autonomy of most robotic FEs results in non-intuitive and challenging manoeuvres, constraining their application in clinical settings. While previous studies have employed lumen tracking for autonomous navigation, they fail to adapt to the presence of obstructions and sharp turns when the endoscope faces the colon wall. In this work, we propose a Deep Reinforcement Learning (DRL)-based navigation strategy that eliminates the need for lumen tracking. However, the use of DRL methods poses safety risks as they do not account for potential hazards associated with the actions taken. To ensure safety, we exploit a Constrained Reinforcement Learning (CRL) method to restrict the policy in a predefined safety regime. Moreover, we present a model selection strategy that utilises Formal Verification (FV) to choose a policy that is entirely safe before deployment. We validate our approach in a virtual colonoscopy environment and report that out of the 300 trained policies, we could identify three policies that are entirely safe. Our work demonstrates that CRL, combined with model selection through FV, can improve the robustness and safety of robotic behaviour in surgical applications.
Image blending aims to combine multiple images seamlessly. It remains challenging for existing 2D-based methods, especially when input images are misaligned due to differences in 3D camera poses and object shapes. To tackle these issues, we propose a 3D-aware blending method using generative Neural Radiance Fields (NeRF), including two key components: 3D-aware alignment and 3D-aware blending. For 3D-aware alignment, we first estimate the camera pose of the reference image with respect to generative NeRFs and then perform 3D local alignment for each part. To further leverage 3D information of the generative NeRF, we propose 3D-aware blending that directly blends images on the NeRF's latent representation space, rather than raw pixel space. Collectively, our method outperforms existing 2D baselines, as validated by extensive quantitative and qualitative evaluations with FFHQ and AFHQ-Cat.
Building accurate and interpretable Machine Learning (ML) models for heterogeneous/mixed data is a long-standing challenge for algorithms designed for numeric data. This work focuses on developing numeric coding schemes for non-numeric attributes for ML algorithms to support accurate and explainable ML models, methods for lossless visualization of n-D non-numeric categorical data with visual rule discovery in these visualizations, and accurate and explainable ML models for categorical data. This study proposes a classification of mixed data types and analyzes their important role in Machine Learning. It presents a toolkit for enforcing interpretability of all internal operations of ML algorithms on mixed data with a visual data exploration on mixed data. A new Sequential Rule Generation (SRG) algorithm for explainable rule generation with categorical data is proposed and successfully evaluated in multiple computational experiments. This work is one of the steps to the full scope ML algorithms for mixed data supported by lossless visualization of n-D data in General Line Coordinates beyond Parallel Coordinates.
Proof terms are syntactic expressions that represent computations in term rewriting. They were introduced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of reductions in (left-linear) first-order term rewriting systems. We study the problem of extending the notion of proof term to higher-order rewriting, which generalizes the first-order setting by allowing terms with binders and higher-order substitution. In previous works that devise proof terms for higher-order rewriting, such as Bruggink's, it has been noted that the challenge lies in reconciling composition of proof terms and higher-order substitution (\b{eta}-equivalence). This led Bruggink to reject "nested" composition, other than at the outermost level. In this paper, we propose a notion of higher-order proof term we dub rewrites that supports nested composition. We then define two notions of equivalence on rewrites, namely permutation equivalence and projection equivalence, and show that they coincide. We also propose a standardization procedure, that computes a canonical representative of the permutation equivalence class of a rewrite.
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.