Recently, Conformer as a backbone network for end-to-end automatic speech recognition achieved state-of-the-art performance. The Conformer block leverages a self-attention mechanism to capture global information, along with a convolutional neural network to capture local information, resulting in improved performance. However, the Conformer-based model encounters an issue with the self-attention mechanism, as computational complexity grows quadratically with the length of the input sequence. Inspired by previous Connectionist Temporal Classification (CTC) guided blank skipping during decoding, we introduce intermediate CTC outputs as guidance into the downsampling procedure of the Conformer encoder. We define the frame with non-blank output as key frame. Specifically, we introduce the key frame-based self-attention (KFSA) mechanism, a novel method to reduce the computation of the self-attention mechanism using key frames. The structure of our proposed approach comprises two encoders. Following the initial encoder, we introduce an intermediate CTC loss function to compute the label frame, enabling us to extract the key frames and blank frames for KFSA. Furthermore, we introduce the key frame-based downsampling (KFDS) mechanism to operate on high-dimensional acoustic features directly and drop the frames corresponding to blank labels, which results in new acoustic feature sequences as input to the second encoder. By using the proposed method, which achieves comparable or higher performance than vanilla Conformer and other similar work such as Efficient Conformer. Meantime, our proposed method can discard more than 60\% useless frames during model training and inference, which will accelerate the inference speed significantly. This work code is available in {//github.com/scufan1990/Key-Frame-Mechanism-For-Efficient-Conformer}
In recent years, pruning has emerged as a popular technique to reduce the computational complexity and memory footprint of Convolutional Neural Network (CNN) models. Mutual Information (MI) has been widely used as a criterion for identifying unimportant filters to prune. However, existing methods for MI computation suffer from high computational cost and sensitivity to noise, leading to suboptimal pruning performance. We propose a novel method to improve MI computation for CNN pruning, using the spatial aura entropy. The spatial aura entropy is useful for evaluating the heterogeneity in the distribution of the neural activations over a neighborhood, providing information about local features. Our method effectively improves the MI computation for CNN pruning, leading to more robust and efficient pruning. Experimental results on the CIFAR-10 benchmark dataset demonstrate the superiority of our approach in terms of pruning performance and computational efficiency.
In active learning for graph-structured data, Graph Neural Networks (GNNs) have shown effectiveness. However, a common challenge in these applications is the underutilization of crucial structural information. To address this problem, we propose the Structural-Clustering PageRank method for improved Active learning (SPA) specifically designed for graph-structured data. SPA integrates community detection using the SCAN algorithm with the PageRank scoring method for efficient and informative sample selection. SPA prioritizes nodes that are not only informative but also central in structure. Through extensive experiments, SPA demonstrates higher accuracy and macro-F1 score over existing methods across different annotation budgets and achieves significant reductions in query time. In addition, the proposed method only adds two hyperparameters, $\epsilon$ and $\mu$ in the algorithm to finely tune the balance between structural learning and node selection. This simplicity is a key advantage in active learning scenarios, where extensive hyperparameter tuning is often impractical.
We present Egocentric Action Scene Graphs (EASGs), a new representation for long-form understanding of egocentric videos. EASGs extend standard manually-annotated representations of egocentric videos, such as verb-noun action labels, by providing a temporally evolving graph-based description of the actions performed by the camera wearer, including interacted objects, their relationships, and how actions unfold in time. Through a novel annotation procedure, we extend the Ego4D dataset by adding manually labeled Egocentric Action Scene Graphs offering a rich set of annotations designed for long-from egocentric video understanding. We hence define the EASG generation task and provide a baseline approach, establishing preliminary benchmarks. Experiments on two downstream tasks, egocentric action anticipation and egocentric activity summarization, highlight the effectiveness of EASGs for long-form egocentric video understanding. We will release the dataset and the code to replicate experiments and annotations.
Recently, deep learning methods have achieved superior performance for Polarimetric Synthetic Aperture Radar(PolSAR) image classification. Existing deep learning methods learn PolSAR data by converting the covariance matrix into a feature vector or complex-valued vector as the input. However, all these methods cannot learn the structure of complex matrix directly and destroy the channel correlation. To learn geometric structure of complex matrix, we propose a Riemannian complex matrix convolution network for PolSAR image classification in Riemannian space for the first time, which directly utilizes the complex matrix as the network input and defines the Riemannian operations to learn complex matrix's features. The proposed Riemannian complex matrix convolution network considers PolSAR complex matrix endowed in Riemannian manifold, and defines a series of new Riemannian convolution, ReLu and LogEig operations in Riemannian space, which breaks through the Euclidean constraint of conventional networks. Then, a CNN module is appended to enhance contextual Riemannian features. Besides, a fast kernel learning method is developed for the proposed method to learn class-specific features and reduce the computation time effectively. Experiments are conducted on three sets of real PolSAR data with different bands and sensors. Experiments results demonstrates the proposed method can obtain superior performance than the state-of-the-art methods.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.