Optimal Transport (OT) problem investigates a transport map that bridges two distributions while minimizing a given cost function. In this regard, OT between tractable prior distribution and data has been utilized for generative modeling tasks. However, OT-based methods are susceptible to outliers and face optimization challenges during training. In this paper, we propose a novel generative model based on the semi-dual formulation of Unbalanced Optimal Transport (UOT). Unlike OT, UOT relaxes the hard constraint on distribution matching. This approach provides better robustness against outliers, stability during training, and faster convergence. We validate these properties empirically through experiments. Moreover, we study the theoretical upper-bound of divergence between distributions in UOT. Our model outperforms existing OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 6.36 on CelebA-HQ-256. The code is available at \url{//github.com/Jae-Moo/UOTM}.
The Weisfeiler-Leman (WL) dimension is a standard measure in descriptive complexity theory for the structural complexity of a graph. We prove that the WL-dimension of a graph on $n$ vertices is at most $3/20 \cdot n + o(n)= 0.15 \cdot n + o(n)$. The proof develops various techniques to analyze the structure of coherent configurations. This includes sufficient conditions under which a fiber can be restored up to isomorphism if it is removed, a recursive proof exploiting a degree reduction and treewidth bounds, as well as an analysis of interspaces involving small fibers. As a base case, we also analyze the dimension of coherent configurations with small fiber size and thereby graphs with small color class size.
Stochastic gradient descent (SGD) is a promising method for solving large-scale inverse problems, due to its excellent scalability with respect to data size. In this work, we analyze a new data-driven regularized stochastic gradient descent for the efficient numerical solution of a class of nonlinear ill-posed inverse problems in infinite dimensional Hilbert spaces. At each step of the iteration, the method randomly selects one equation from the nonlinear system combined with a corresponding equation from the learned system based on training data to obtain a stochastic estimate of the gradient and then performs a descent step with the estimated gradient. We prove the regularizing property of this method under the tangential cone condition and a priori parameter choice and then derive the convergence rates under the additional source condition and range invariance conditions. Several numerical experiments are provided to complement the analysis.
Optimal behaviours of a system to perform a specific task can be achieved by leveraging the coupling between trajectory optimization, stabilization, and design optimization. This approach is particularly advantageous for underactuated systems, which are systems that have fewer actuators than degrees of freedom and thus require for more elaborate control systems. This paper proposes a novel co-design algorithm, namely Robust Trajectory Control with Design optimization (RTC-D). An inner optimization layer (RTC) simultaneously performs direct transcription (DIRTRAN) to find a nominal trajectory while computing optimal hyperparameters for a stabilizing time-varying linear quadratic regulator (TVLQR). RTC-D augments RTC with a design optimization layer, maximizing the system's robustness through a time-varying Lyapunov-based region of attraction (ROA) analysis. This analysis provides a formal guarantee of stability for a set of off-nominal states. The proposed algorithm has been tested on two different underactuated systems: the torque-limited simple pendulum and the cart-pole. Extensive simulations of off-nominal initial conditions demonstrate improved robustness, while real-system experiments show increased insensitivity to torque disturbances.
We extend the persistence algorithm, viewed as an algorithm computing the homology of a complex of free persistence or graded modules, to complexes of modules that are not free. We replace persistence modules by their presentations and develop an efficient algorithm to compute the homology of a complex of presentations. To deal with inputs that are not given in terms of presentations, we give an efficient algorithm to compute a presentation of a morphism of persistence modules. This allows us to compute persistent (co)homology of instances giving rise to complexes of non-free modules. Our methods lead to a new efficient algorithm for computing the persistent homology of simplicial towers and they enable efficient algorithms to compute the persistent homology of cosheaves over simplicial towers and cohomology of persistent sheaves on simplicial complexes. We also show that we can compute the cohomology of persistent sheaves over arbitrary finite posets by reducing the computation to a computation over simplicial complexes.
In the realm of Reinforcement Learning (RL), online RL is often conceptualized as an optimization problem, where an algorithm interacts with an unknown environment to minimize cumulative regret. In a stationary setting, strong theoretical guarantees, like a sublinear ($\sqrt{T}$) regret bound, can be obtained, which typically implies the convergence to an optimal policy and the cessation of exploration. However, these theoretical setups often oversimplify the complexities encountered in real-world RL implementations, where tasks arrive sequentially with substantial changes between tasks and the algorithm may not be allowed to adaptively learn within certain tasks. We study the changes beyond the outcome distributions, encompassing changes in the reward designs (mappings from outcomes to rewards) and the permissible policy spaces. Our results reveal the fallacy of myopically minimizing regret within each task: obtaining optimal regret rates in the early tasks may lead to worse rates in the subsequent ones, even when the outcome distributions stay the same. To realize the optimal cumulative regret bound across all the tasks, the algorithm has to overly explore in the earlier tasks. This theoretical insight is practically significant, suggesting that due to unanticipated changes (e.g., rapid technological development or human-in-the-loop involvement) between tasks, the algorithm needs to explore more than it would in the usual stationary setting within each task. Such implication resonates with the common practice of using clipped policies in mobile health clinical trials and maintaining a fixed rate of $\epsilon$-greedy exploration in robotic learning.
Average Treatment Effect (ATE) estimation is a well-studied problem in causal inference. However, it does not necessarily capture the heterogeneity in the data, and several approaches have been proposed to tackle the issue, including estimating the Quantile Treatment Effects. In the finite population setting containing $n$ individuals, with treatment and control values denoted by the potential outcome vectors $\mathbf{a}, \mathbf{b}$, much of the prior work focused on estimating median$(\mathbf{a}) -$ median$(\mathbf{b})$, where median($\mathbf x$) denotes the median value in the sorted ordering of all the values in vector $\mathbf x$. It is known that estimating the difference of medians is easier than the desired estimand of median$(\mathbf{a-b})$, called the Median Treatment Effect (MTE). The fundamental problem of causal inference -- for every individual $i$, we can only observe one of the potential outcome values, i.e., either the value $a_i$ or $b_i$, but not both, makes estimating MTE particularly challenging. In this work, we argue that MTE is not estimable and detail a novel notion of approximation that relies on the sorted order of the values in $\mathbf{a-b}$. Next, we identify a quantity called variability that exactly captures the complexity of MTE estimation. By drawing connections to instance-optimality studied in theoretical computer science, we show that every algorithm for estimating the MTE obtains an approximation error that is no better than the error of an algorithm that computes variability. Finally, we provide a simple linear time algorithm for computing the variability exactly. Unlike much prior work, a particular highlight of our work is that we make no assumptions about how the potential outcome vectors are generated or how they are correlated, except that the potential outcome values are $k$-ary, i.e., take one of $k$ discrete values.
This article analyzes the algebraic structure of the set of all quantum channels and its subset consisting of quantum channels that have Holevo representation. The regularity of these semigroups under composition of mappings are analysed. It is also known that these sets are compact convex sets and, therefore, rich in geometry. An attempt is made to identify generalized invertible channels and also the idempotent channels. When channels are of the Holevo type, these two problems are fully studied in this article. The motivation behind this study is its applicability to the reversibility of channel transformations and recent developments in resource-destroying channels, which are idempotents. This is related to the coding-encoding problem in quantum information theory. Several examples are provided, with the main examples coming from pre-conditioner maps which assigns preconditioners to matrices, in numerical linear algebra.Thus the known pre-conditioner maps are viewd as a quantum-channel in finite dimentions.
We study dual number symmetric matrices, dual complex Hermitian matrices and dual quaternion Hermitian matrices in a unified frame of dual Hermitian matrices. Suppose we have a ring, which can be the real field, the complex field, or the quaternion ring. Then an $n \times n$ dual Hermitian matrix has $n$ dual number eigenvalues. We define supplement matrices for a dual Hermitian matrix. Supplement matrices are Hermitian matrices in the original ring. The standard parts of the eigenvalues of that dual Hermitian matrix are the eigenvalues of the standard part Hermitian matrix in the original ring, while the dual parts of the eigenvalues of that dual Hermitian matrix are the eigenvalues of those {supplement} matrices. Hence, by apply any practical method for computing eigenvalues of Hermitian matrices in the original ring, we have a practical method for computing eigenvalues of a dual Hermitian matrix. We call this method the supplement matrix method. Applications to low rank approximation and generalized inverses of dual matrices, dual least squares problem and formation control are discussed. Numerical experiments are reported.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.